Lake Powell Pipeline

Draft Study Report 20 Wetlands and Riparian Resources

March 2011

Table of Contents

Executive Summary

ES-1 Introduction	ES-1
ES-2 Methodology	ES-1
ES-3 Key Results of the Wetlands and Riparian Resources Impact Analyses	
ES-3.1 Wetlands	ES-1
ES-3.2 Riparian Resources	ES-1
ES-3.3 Jurisdictional Waters	ES-2
ES-4 Mitigation and Monitoring	ES-2
ES-5 Unavoidable Adverse Impacts	ES-2

Chapter 1 – Introduction

1.1 Introduction			
1.2 Summary I	1.2 Summary Description of Alignment Alternatives		
1.2.1	South Alternative	1-1	
1.2.2	Existing Highway Alternative	1-9	
1.2.3	Southeast Corner Alternative	1-9	
1.2.4	Transmission Line Alternatives		
1.3 Summary I	Description of No Lake Powell Water Alternative	1-18	
1.3.1	WCWCD No Lake Powell Water Alternative		
1.3.2	CICWCD No Lake Powell Water Alternative		
1.3.3	KCWCD No Lake Powell Water Alternative		
1.4 Summary I	Description of the No Action Alternative	1-19	
1.4.1	WCWCD No Action Alternative	1-20	
1.4.2	CICWCD No Action Alternative	1-20	
1.4.3	KCWCD No Action Alternative	1-20	
1.5 Identified I	lssues	1-21	
1.5.1	Study Goals and Objectives		
	1.5.1.1 Jurisdictional Determination		
1.6 Impact Topics			

Chapter 2 – Methodology

2.1	Data Used.			
	2.1.1	Backgrou	und/Literature Review	
		•	ta	
		2.1.2.1	Wetland Determination	
		2.1.2.2	Functional Assessment	
		2.1.2.3	Scour Chains and Crest Gages	
2.2			hodology	

Chapter 3 – Affected Environment (Baseline Conditions)

3.1	Study Area	3-1
	Overview	
	Wetlands	
3.4	Riparian Areas	3-4
	Stream Scour and Sediment Deposition	
	3.5.1 Ash Creek	

Table of Contents (continued)

			Page
	3.5.2	South Forebay Wash	
	3.5.3	Bitter Seeps Wash	3-9
	3.5.4	Jacob Canyon at Kanab Creek	
	3.5.5	Kanab Creek in Kanab Creek Canyon	
	3.5.6	Two-Mile Wash	
	3.5.7	Cottonwood Wash	
	3.5.8	Johnson Wash	
	3.5.9	Sand Gulch Near Confluence with Paria River	
	3.5.10	Paria River at U.S. Highway 89	
	3.5.11	Wash West of Blue Pool Wash	
	3.5.12	Second Wash West of Greenhaven	
	3.5.13	First Wash West of Greenhaven	
3.6	Jurisdiction	nal Waters	
3.7	Permitting	Requirements	3-13

Chapter 4 – Environmental Consequences (Impacts)

4.1 Significan	ce Criteria		4-1
4.2 Potential I	mpacts Eli	minated From Further Analysis	4-1
4.3 South Alte	ernative		4-1
4.3.1	Construc	tion	4-1
	4.3.1.1	Wetlands	4-1
	4.3.2.1	Riparian Areas	4-2
	4.3.1.3	Jurisdictional Waters	4-2
	4.3.1.4	Permitting Requirements	4-3
4.3.1	Operatio	n and Maintenance	4-4
4.4 Existing H	lighway Pi	peline Alternative	4-4
4.4.1	Construc	tion	4-4
	4.4.1.1	Wetlands	4-4
	4.4.1.2	Riparian Areas	4-5
	4.4.1.3	Jurisdictional Waters	4-5
	4.4.1.4	Permitting Requirements	4-6
4.4.2	Operatio	n and Maintenance	4-7
		beline Alternative	
4.6 Transmissi		lternatives	
4.6.1	Construc	tion	4-7
	4.6.1.1	Wetlands	
	4.6.1.2	Riparian Areas	4-8
	4.6.1.3	Jurisdictional Waters	
	4.6.1.4	Permitting Requirements	4-9
4.6.2	Operatio	n and Maintenance	
		er Alternative	
4.8 No Action	Alternativ	/e	

Chapter 5 – Mitigation and Monitoring

Chapter 6 – Unavoidable Adverse Impacts

6.1 South Alternative	6-1
-----------------------	-----

Table of Contents (continued)

		Page
6.1.1	Construction	6-1
6.1.2	Operation and Maintenance	6-1
6.2 Existing	Highway Alternative	6-1
6.2.1	Construction	6-1
6.2.2	Operation and Maintenance	6-1
6.3 South	neast Corner Alternative	6-1
6.3.1	Construction	6-1
6.3.2	Operation and Maintenance	6-1
6.4 Transmis	sion Line Alternatives	
6.4.1	Construction	
6.4.2	Operation and Maintenance	
6.5 No Lake	Powell Water Alternative	
6.6 No Actio	n Alternative	

Chapter 7 – Cumulative Impacts

7.1 South Alternative	7-1
7.2 Existing Highway Alternative	7-2
7.3 Southeast Corner Alternative	7-1
7.4 Transmission Line Alternatives	
7.5 No Lake Powell Water Alternative	7-1
7.6 No Action Alternative	7-1
References Cited	
Abbreviations and Acronyms	A&A-1
List of Preparers	
Appendix A – Wetland Delineation Report A	ppendix A-1
Appendix B – Properly Functioning Conditions A	ppendix B-1
Appendix C - Riparian Area Functional Assessment Data Sheets A	ppendix C-1
Appendix D – Lake Powell Pipeline Draft 404(b)(1) Analysis A	ppendix D-1

Table of Contents (continued)

Tables

Table Nun	nber Table Title	Page
Table 2-1	Scour Chains Installed and Removed During Field Surveys	2-3
Table 2-2	Crest Gages Installed and Removed During Field Surveys	
Table 3-1	Summary of Features Evaluated in Study Area	
Table 3-2	Riparian Areas Within the Study Area	
Table 3-3	Summary of Properly Functioning Condition Ratings and Trends for	
	Riparian Areas in the Study Area	3-6
Table 3-4	Summary of Functional Assessments for Riparian Areas in the Study Area	3-7
Table 3-5	Summary of Values for Riparian Areas in the Study Area	3-8
Table 3-6	Summary of Jurisdictional Waters in the Study Area	3-12
Table 3-7	Summary of Permits Required for Crossing Jurisdictional Waters	3-13
Table 4-1	Riparian Areas in the South Alternative Study Area	4-2
Table 4-2	Summary of Jurisdictional Water sin the South Alternative Study Area	4-3
Table 4-3	Summary of Expected Permits Required in the South Alternative Study Area	4-4
Table 4-4	Riparian Areas in the Existing Highway Alternative Study Area	4-5
Table 4-5	Summary of Jurisdictional Waters in the Existing Highway Alternative Study Area	4-6
Table 4-6	Summary of Expected Permits Required in the Existing Highway	
	Alternative Study Area	4-7
Table 4-7	Riparian Areas in the Transmission Line Alternatives Study Area	4-8
Table 4-8	Summary of Jurisdictional Waters in the Transmission Line Alternatives Study Area	4-8
Table 4-9	Summary of Expected Permits Required in the Transmission Line	
	Alternatives Study Area	4-9

Figures

Figure Numbe	er
---------------------	----

Figure Title

Page

Figure 1-1	Lake Powell Pipeline Proposed Project and Alternative Features	1-3
Figure 1-2	Lake Powell Pipeline Intake and Water Conveyance Systems	1-4
Figure 1-3	Lake Powell Pipeline Hydro System South Alternative	1-6
Figure 1-4	Cedar Valley Pipeline System	1-8
Figure 1-5	Lake Powell Pipeline Hydro System Existing Highway Alternative	1-10
Figure 1-6	Lake Powell Pipeline Hydro System Southwest Corner Alternative	1-12
Figure 1-7	Lake Powell Pipeline Transmission Line Alternatives East	1-13
Figure 1-8	Lake Powell Pipeline Transmission Line Alternatives West	1-16
Figure 1-9	Cedar Valley Transmission Line Alternatives	1-17
Figure 3-1	Wetland and Riparian Features Evaluated in the Study Area	3-5

Wetlands and Riparian Resources Study Report Executive Summary

ES-1 Introduction

This study report describes the results and findings of the wetlands and riparian resources analysis along the proposed alternative alignments of the Lake Powell Pipeline (LPP) Project, the No Lake Powell Water Alternative, and the No Action Alternative. The purpose of the analysis, as defined in the 2008 Wetlands and Riparian Resources Study Plan prepared for the Federal Energy Regulatory Commission (Commission), was to identify potential impacts on wetlands and riparian resources during construction and operations of the alternatives, and identify measures to mitigate impacts on wetlands and riparian resources as necessary.

ES-2 Methodology

The analysis of impacts on wetlands and riparian resources follows methodology identified and described in the Preliminary Application Document, Scoping Document No. 1 and the Wetlands and Riparian Resources Study Plan #20 prepared for and filed with the Commission.

ES-3 Key Results of the Wetlands and Riparian Resources Impact Analyses

ES-3.1 Wetlands

One wetland with an area of 0.01 acre was delineated within the study area common to all LPP alignment alternatives. This wetland is in Gould Wash downstream of the existing road crossing and proposed Cedar Valley Pipeline alignment and the proposed transmission line alignment. Potential indirect impacts on this wetland area could occur during construction and could be mitigated by installing silt fences upstream of the wetland to trap excess sediments and filter particles out of turbid water. The LPP operations would not have impacts on this wetland or any other wetlands.

ES-3.2 Riparian Resources

Seventeen riparian areas were analyzed within the study area along the LPP alignment alternatives. Ten of these riparian areas were determined to be non-functional, six were determined to be functional-at risk, and one (LaVerkin Creek) was determined to be in properly functioning condition. The South Alternative and Southeast Corner Alternative construction would directly or indirectly impact 48.08 acres of riparian resources. The Existing Highway Alternative construction would directly or indirectly impact 52.47 acres of riparian resources. The Transmission Line Alternatives would directly or indirectly impact 42.83 acres of riparian resources. LPP operations would have no measurable direct or indirect impacts on riparian resources.

The No Lake Powell Water Alternative would have indirect impacts on riparian resources in the St. George metropolitan area and Cedar Valley streams under the influence of groundwater recharge from residential outdoor watering. Riparian vegetation communities could diminish in function and areal extent as reaches of the Virgin River and its tributary streams transition from gaining to losing reaches.

ES-3.3 Jurisdictional Waters

Seventeen jurisdictional waters were analyzed within the study area along the LPP South Alternative and Southeast Corner Alternative. LPP construction of the South Alternative and Southeast Corner Alternative would directly impact 11.72 acres of jurisdictional waters. Seventeen jurisdictional waters were analyzed within the study area along the Existing Highway Alternative. LPP construction of the Existing Highway Alternative would directly impact 11.56 acres of jurisdictional waters. The Transmission Line Alternatives would have direct impacts on two jurisdictional waters totaling 3.60 acres. LPP operations would have no direct impacts on jurisdictional waters.

ES-4 Mitigation and Monitoring

Mitigation measures incorporating best management practices and standard construction procedures are identified to avoid, minimize and reduce impacts on wetlands and riparian resources. Monitoring of riparian revegetation mitigation measures would be performed for up to three years following construction at pipeline crossings to make sure riparian cover objectives are accomplished.

ES-5 Unavoidable Adverse Impacts

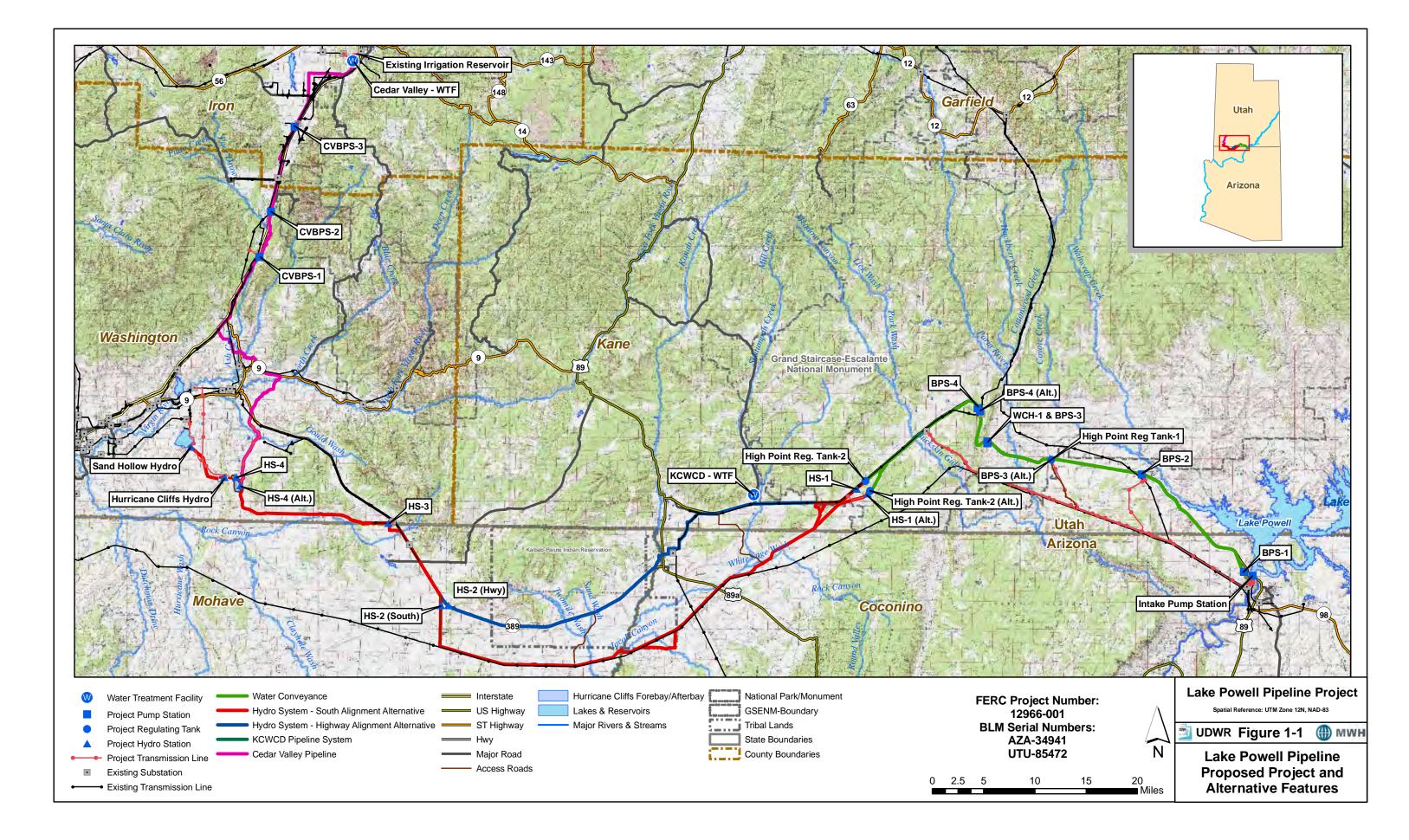
The LPP alignment alternatives would have temporary unavoidable adverse direct impacts on riparian resources at the pipeline crossings of streams, rivers and washes. Loss of riparian vegetation at the pipeline crossings would be an unavoidable direct impact of construction. Temporary unavoidable adverse indirect impacts could occur on riparian resource functions such as hydrologic disruptions, soil disturbance and sedimentation, and decreased water quality. These temporary adverse impacts would diminish as riparian vegetation cover and resources are restored along stream, river and wash banks.

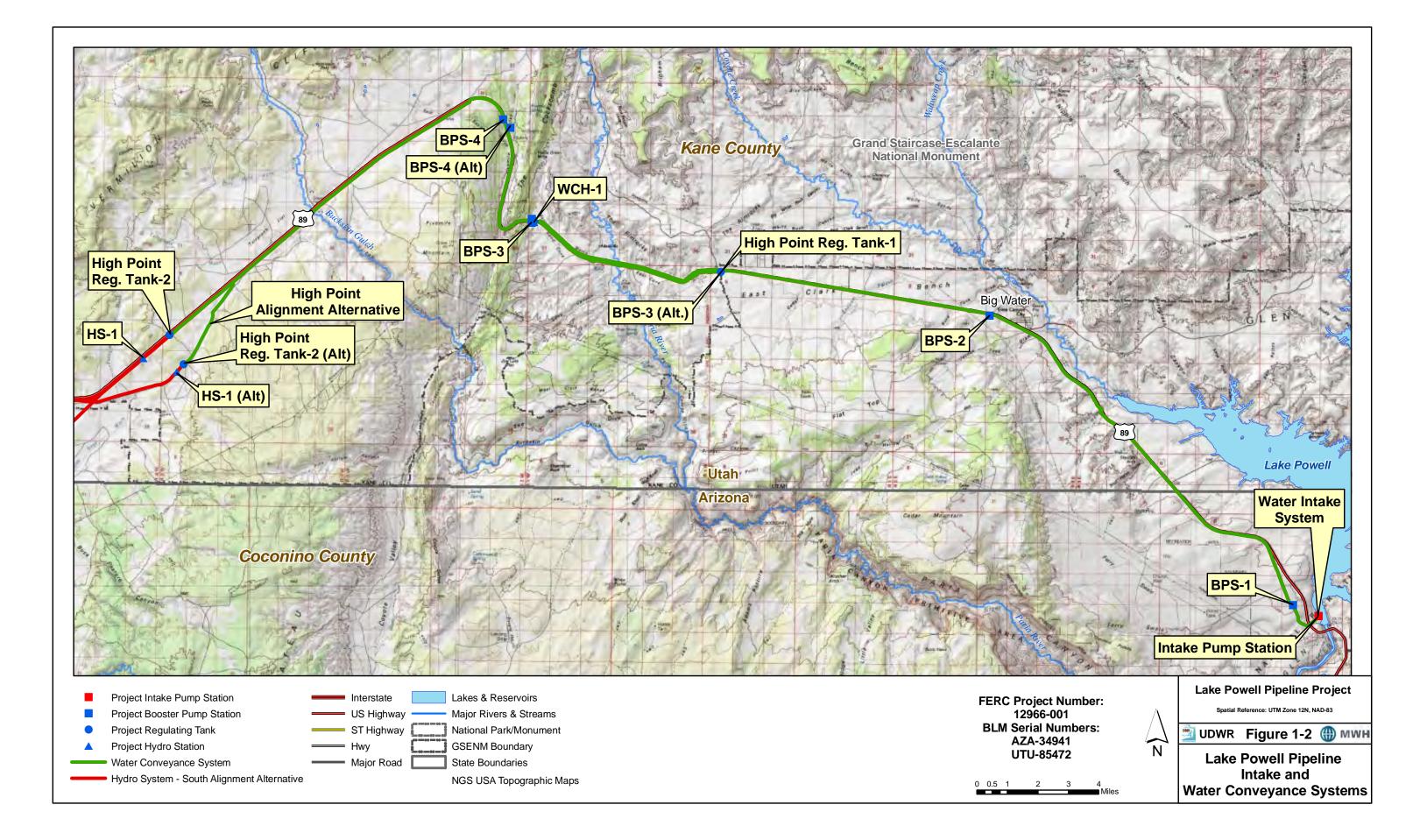
Chapter 1 Introduction

1.1 Introduction

This chapter presents a summary description of the alternatives studied for the Lake Powell Pipeline (LPP) project, located in north central Arizona and southwest Utah (Figure 1-1) and identifies the issues and impact topics for the Wetlands and Riparian Resources Study Report. The alternatives studied and analyzed include different alignments for pipelines and penstocks and transmission lines, a no Lake Powell water alternative, and the No Action alternative. The pipelines would convey water under pressure and connect to the penstocks, which would convey the water to a series of hydroelectric power generating facilities. The action alternatives would each deliver 86,249 acre-feet of water annually for municipal and industrial (M&I) use in the three southwest Utah water conservancy district service areas. Washington County Water Conservancy District (WCWCD) would receive 69,000 acre-feet, Kane County Water Conservancy District (CICWCD) could receive up to 13,249 acre-feet each year.

1.2 Summary Description of Alignment Alternatives

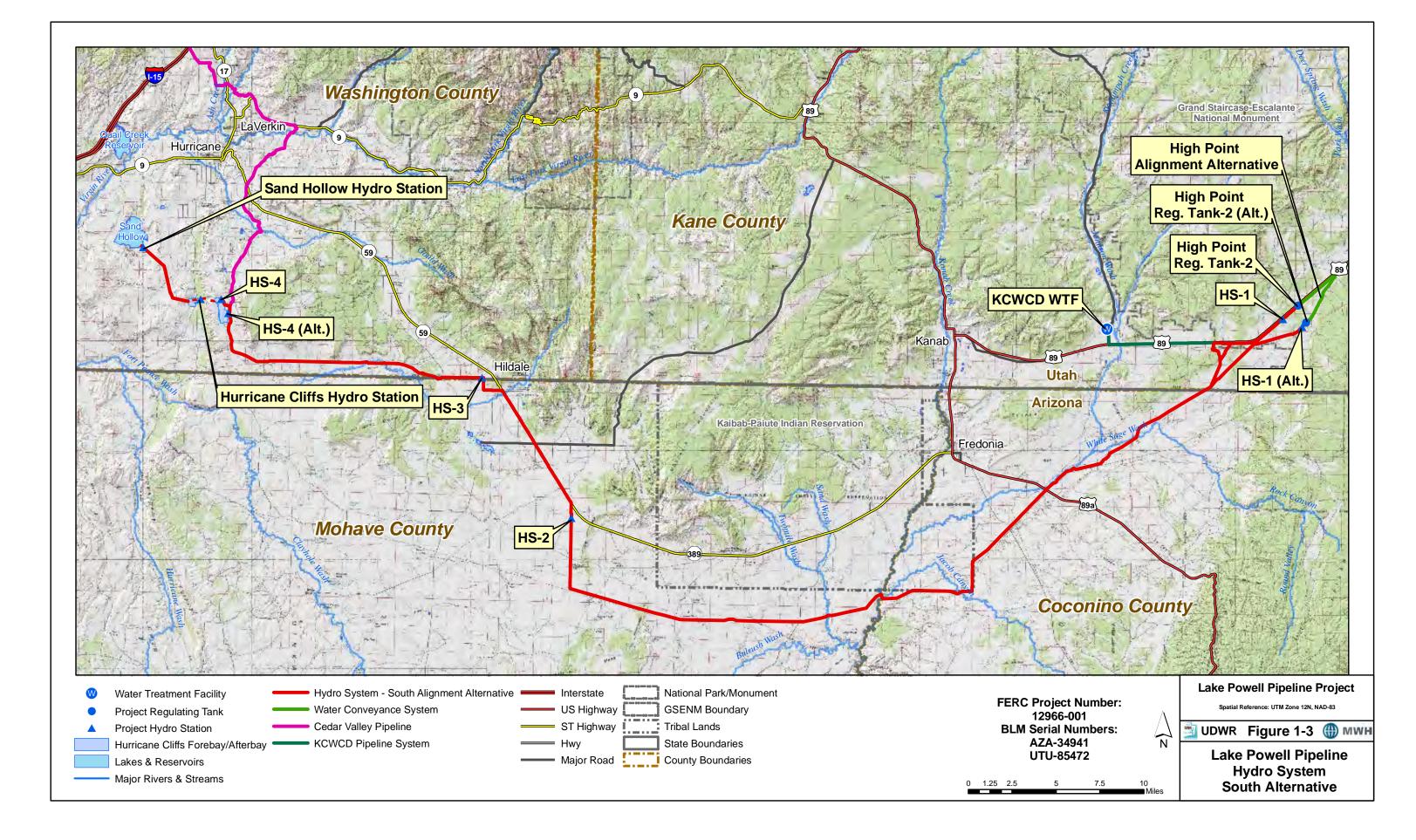

Three primary pipeline and penstock alignment alternatives are described in this section along with the electrical power transmission line alternatives. The pipeline and penstock alignment alternatives share common segments between the intake at Lake Powell and delivery at Sand Hollow Reservoir, and they are spatially different in the area through and around the Kaibab-Paiute Indian Reservation. The South Alternative extends south around the Kaibab Indian Reservation. The Existing Highway Alternative follows an Arizona state highway through the Kaibab Indian Reservation. The Southeast Corner Alternative follows the Navajo-McCullough Transmission Line corridor through the southeast corner of the Kaibab Indian Reservation. The transmission line alignment alternatives are common to all the pipeline and penstock alignment alternatives. Figure 1-1 shows the overall proposed project features from Lake Powell near Page, Arizona to Sand Hollow and Cedar Valley, Utah.


1.2.1 South Alternative

The South Alternative consists of five systems: Intake, Water Conveyance, Hydro, Kane County Pipeline, and Cedar Valley Pipeline.

The **Intake System** would pump Lake Powell water via submerged horizontal tunnels and vertical shafts into the LPP. The intake pump station would be constructed and operated adjacent to the west side of Lake Powell approximately 2,000 feet northwest of Glen Canyon Dam in Coconino County, Arizona (Figure 1-2). The pump station enclosure would house vertical turbine pumps with electric motors, electrical controls, and other equipment at a ground level elevation of 3,745 feet mean sea level (MSL).

The **Water Conveyance System** would convey the Lake Powell water from the Intake System for about 51 miles through a buried 69-inch diameter pipeline parallel with U.S. 89 in Coconino County, Arizona and Kane County, Utah to a buried regulating tank (High Point Regulating Tank-2) on the south side of U.S. 89 at ground level elevation 5,695 feet MSL, which is the LPP project topographic high point


(Figure 1-2). The pipeline would be sited within a utility corridor established by Congress in 1998 which extends 500 feet south and 240 feet north of the U.S. 89 centerline on public land administered by the Bureau of Land Management (BLM) (U.S. Congress 1998). Four booster pump stations (BPS) located along the pipeline would pump the water under pressure to the high point regulating tank. Each BPS would house vertical turbine pumps with electric motors, electrical controls, and other equipment. Additionally, each BPS site would have a substation, buried forebay tank and a surface emergency overflow detention basin. BPS-1 would be sited within the Glen Canyon National Recreation Area adjacent to an existing Arizona Department of Transportation maintenance facility located west of U.S. 89. BPS-2 would be sited on land administered by the Utah School and Institutional Trust Lands Administration (SITLA) near the town of Big Water, Utah on the south side of U.S. 89. BPS-3 and an inline hydro station (WCH-1) would be sited at the east side of the Cockscomb geologic feature in the Grand Staircase-Escalante National Monument (GSENM) within the Congressionally-designated utility corridor. BPS-3 (Alt) is an alternative location for BPS-3 on land administered by the BLM Kanab Field Office near the east boundary of the GSENM on the south side of U.S. 89 within the Congressionallydesignated utility corridor. Incorporation of BPS-3 (Alt.) into the LPP project would replace BPS-3 and WCH-1 at the east side of the Cockscomb geologic feature. BPS-4 would be sited on the west side of U.S. 89 and within the Congressionally-designated utility corridor in the GSENM on the west side of the Cockscomb geologic feature.

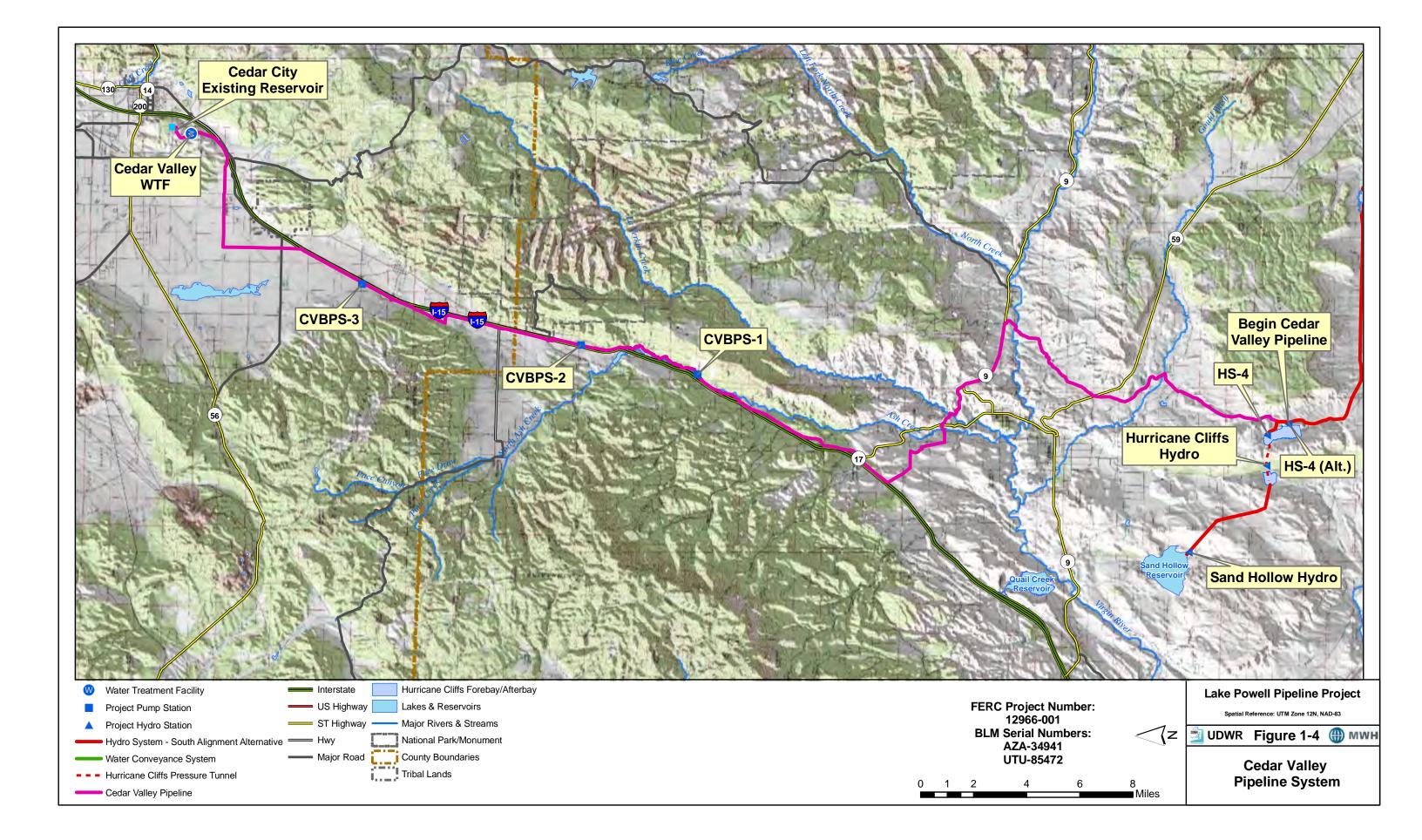
The High Point Alignment Alternative would diverge south from U.S. 89 parallel to the K4020 road and continue outside of the Congressionally-designated utility corridor to a buried regulating tank (High Point Regulating Tank-2 (Alt.) at ground level elevation 5,630 feet MSL, which would be the topographic high point of the LPP project along this alignment alternative (Figure 1-2). The High Point Alignment Alternative would include BPS-4 (Alt.) on private land east of U.S. 89 and west of the Cockscomb geologic feature (Figure 1-2). Incorporation of the High Point Alignment Alternative and BPS-4 (Alt.) into the LPP project would replace the High Point Regulation Tank-2 along U.S. 89, the associated buried pipeline and BPS-4 west of U.S. 89.

A rock formation avoidance alignment option would be included immediately north of Blue Pool Wash along U.S. 89 in Utah. Under this alignment option, the pipeline would cross to the north side of U.S. 89 for about 400 feet and then return to the south side of U.S. 89. This alignment option would avoid tunneling under the rock formation on the south side of U.S. 89 near Blue Pool Wash.

A North Pipeline Alignment option is located parallel to the north side of U.S. 89 for about 6 miles from the east boundary of the GSENM to the east side of the Cockscomb geological feature.

The **Hydro System** would convey the Lake Powell water from High Point Regulating Tank-2 at the high point at ground level elevation 5,695 feet MSL for about 87 miles through a buried 69-inch diameter penstock in Kane and Washington counties, Utah and Coconino and Mohave counties, Arizona to Sand Hollow Reservoir near St. George, Utah (Figure 1-3). The High Point Alignment Alternative would convey the Lake Powell water from High Point Regulating Tank-2 (Alt.) at the high point at ground level elevation 5,630 feet MSL for about 87.5 miles through a buried 69-inch diameter penstock in Kane and Washington counties, Utah and Coconino and Mohave counties, Arizona to Sand Hollow Reservoir near St. George, Utah (Figure 1-3). Four in-line hydro generating stations (HS-1, HS-2 HS-3 and HS-4) with substations located along the penstock would generate electricity and help control water pressure in the penstock. HS-1 would be sited on the south side of U.S. 89 within the Congressionally-designated utility corridor through the GSENM. The High Point Alignment Alternative would include HS-1 (Alt.) along the K4020 road within the GSENM and continue along a portion of the K3290 road.

The proposed penstock alignment and two penstock alignment options are being considered to convey the water from the west GSENM boundary south through White Sage Wash. The proposed penstock alignment would parallel the K3250 road south from U.S. 89 and follow the Pioneer Gap Road alignment around the Shinarump Cliffs. One penstock alignment option would parallel the K3285 road southwest from U.S. 89 and continue to join the Pioneer Gap Road around the Shinarump Cliffs. The other penstock alignment option would extend southwest through currently undeveloped BLM land from the K3290 road into White Sage Wash.


The penstock alignment would continue through White Sage Wash and then parallel to the Navajo-McCullough Transmission Line, crossing U.S. 89 Alt. and Forest Highway 22 toward the southeast corner of the Kaibab Indian Reservation. The penstock alignment would run parallel to and south of the south boundary of the Kaibab Indian Reservation, crossing Kanab Creek and Bitter Seeps Wash, across Moonshine Ridge and Cedar Ridge, and north along Yellowstone Road to Arizona State Route 389 west of the Kaibab Indian Reservation. HS-2 would be sited west of the Kaibab Indian Reservation. The penstock alignment would continue northwest along the south side of Arizona State Route 389 past Colorado City to Hildale City, Utah and HS-3.

The penstock alignment would follow Uzona Road west through Canaan Gap and south of Little Creek Mountain and turn north to HS-4 (Alt.) above the proposed Hurricane Cliffs forebay reservoir. The forebay reservoir would be contained in a valley between a south dam and a north dam and maintain active storage of 11,255 acre-feet of water. A low pressure tunnel would convey the water to a high pressure vertical shaft in the bedrock forming the Hurricane Cliffs, connected to a high pressure tunnel near the bottom of the Hurricane Cliffs. The high pressure tunnel would connect to a penstock conveying the water to a pumped storage hydro generating station. The pumped storage hydro generating station would connect to an afterbay reservoir contained by a single dam in the valley below the Hurricane Cliffs. A low pressure tunnel would convey the water northwest to a penstock continuing on to the Sand Hollow Hydro Station. The water would discharge into the existing Sand Hollow Reservoir.

The peaking hydro generating station option would involve a smaller, 200 acre-foot forebay reservoir with HS-4 discharging into the forebay reservoir, with the peaking hydro generating station discharging to a small afterbay connected to a penstock running north along the existing BLM road and west to the Sand Hollow Hydro Station. A low pressure tunnel would convey the water to a high pressure vertical shaft in the bedrock forming the Hurricane Cliffs, connected to a penstock conveying the water to a peaking hydro generating station, which would discharge into a 200 acre-foot afterbay reservoir. A penstock would extend north from the afterbay reservoir along the existing BLM road and then west to the Sand Hollow Hydro Station. The water would discharge into the existing BLM road and then west to the Sand Hollow Hydro Station. The water would discharge into the existing Sand Hollow Reservoir.

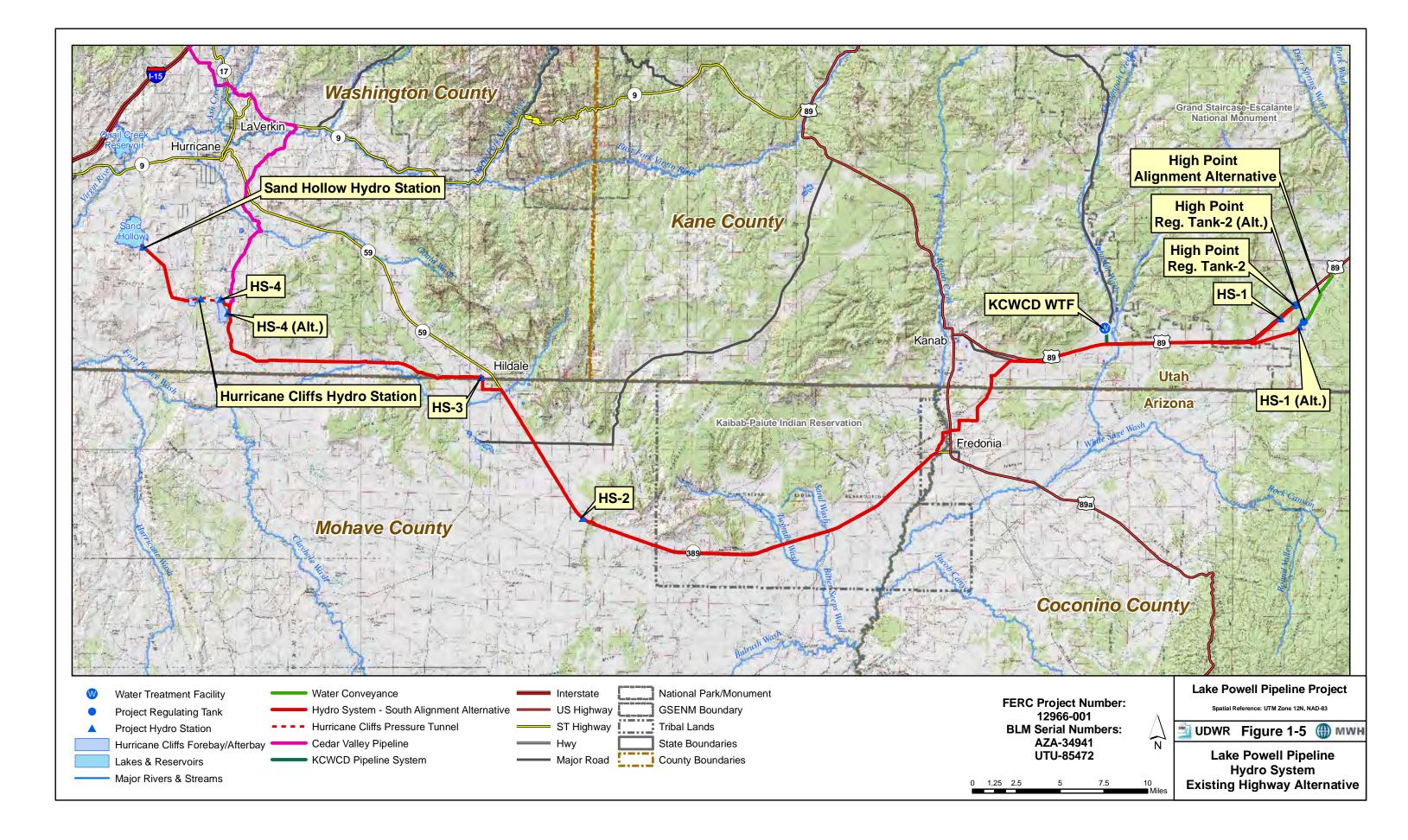
The **Kane County Pipeline System** would convey the Lake Powell water from the Lake Powell Pipeline at the west GSENM boundary for about 8 miles through a buried 24-inch diameter pipe in Kane County, Utah to a conventional water treatment facility located near the mouth of Johnson Canyon. The pipeline would parallel the south side of U.S. 89 across Johnson Wash and then run north to the new water treatment facility site (Figure 1-3).

The **Cedar Valley Pipeline System** would convey the Lake Powell water from the Lake Powell Pipeline just upstream of HS-4 or HS-4 (Alt.) for about 58 miles through a buried 36-inch diameter pipeline in Washington and Iron counties, Utah to a conventional water treatment facility in Cedar City, Utah (Figure 1-4). Three booster pump stations (CBPS) located along the pipeline would pump the water under pressure to the new water treatment facility. The pipeline would follow an existing BLM road north from HS-4, cross Utah State Route 59 and continue north to Utah State Route 9, with an aerial crossing of the Virgin River at the Sheep Bridge. The pipeline would run west along the north side of Utah State Route 9

and parallel an existing pipeline through the Hurricane Cliffs at Nephi's Twist. The pipeline would continue across La Verkin Creek, cross Utah State Route 17, and make an aerial crossing of Ash Creek. The pipeline would continue northwest to the Interstate 15 corridor and then northeast parallel to the east side of Interstate 15 highway right-of-way. CBPS-1 would be sited adjacent to an existing gravel pit east of Interstate 15. CBPS-2 would be sited on private property on the east side of Interstate 15 and south of the Kolob entrance to Zion National Park. CBPS-3 would be sited on the west side of Interstate 15 in Iron County. The new water treatment facility would be sited near existing water reservoirs on a hill above Cedar City west of Interstate 15.

1.2.2 Existing Highway Alternative

The Existing Highway Alternative consists of five systems: Intake, Water Conveyance, Hydro, Kane County Pipeline, and Cedar Valley Pipeline. The Intake, Water Conveyance and Cedar Valley Pipeline systems would be the same as described for the South Alternative.


The **Hydro System** would convey the Lake Powell water from the regulating tank at the high point at ground elevation 5,695 feet MSL for about 80 miles through a buried 69-inch diameter penstock in Kane and Washington counties, Utah and Coconino and Mohave counties, Arizona to Sand Hollow Reservoir near St. George, Utah (Figure 1-5). The High Point Alignment Alternative would convey the Lake Powell water from High Point Regulating Tank-2 (Alt.) at the high point at ground level elevation 5,630 feet MSL for about 80.5 miles through a buried 69-inch diameter penstock in Kane and Washington counties, Utah and Coconino and Mohave counties, Arizona to Sand Hollow Reservoir near St. George, Utah (Figure 1-3). The High Point Alignment Alternative would rejoin U.S. 89 about 2.5 miles east of the west boundary of the GSENM. Four in-line hydro generating stations (HS-1, HS-2 HS-3 and HS-4) located along the penstock would generate electricity and help control water pressure in the penstock. HS-1 would be sited on the south side of U.S. 89 within the Congressionally-designated utility corridor through the GSENM and continue along a portion of the K3290 road to its junction with the pipeline alignment along U.S. 89.

The penstock would parallel the south side of U.S. 89 west of the GSENM past Johnson Wash and follow Lost Spring Gap southwest, crossing U.S. 89 Alt. and Kanab Creek in the north end of Fredonia, Arizona. The penstock would run south paralleling Kanab Creek to Arizona State Route 389 and run west adjacent to the north side of this state highway through the Kaibab-Paiute Indian Reservation past Pipe Spring National Monument. The penstock would continue along the north side of Arizona State Route 389 through the Kaibab-Paiute Indian Reservation to 1.8 miles west of Cedar Ridge (intersection of Yellowstone Road with U.S. 89), from where it would follow the same alignment as the South Alternative to Sand Hollow Reservoir. HS-2 would be sited 0.5 mile west of Cedar Ridge along the north side of Arizona State Route 389.

The **Kane County Pipeline System** would convey the Lake Powell water from the Lake Powell Pipeline crossing Johnson Wash along U.S. 89 for about 1 mile north through a buried 24-inch diameter pipe in Kane County, Utah to a conventional water treatment facility located near the mouth of Johnson Canyon (Figure 1-5).

1.2.3 Southeast Corner Alternative

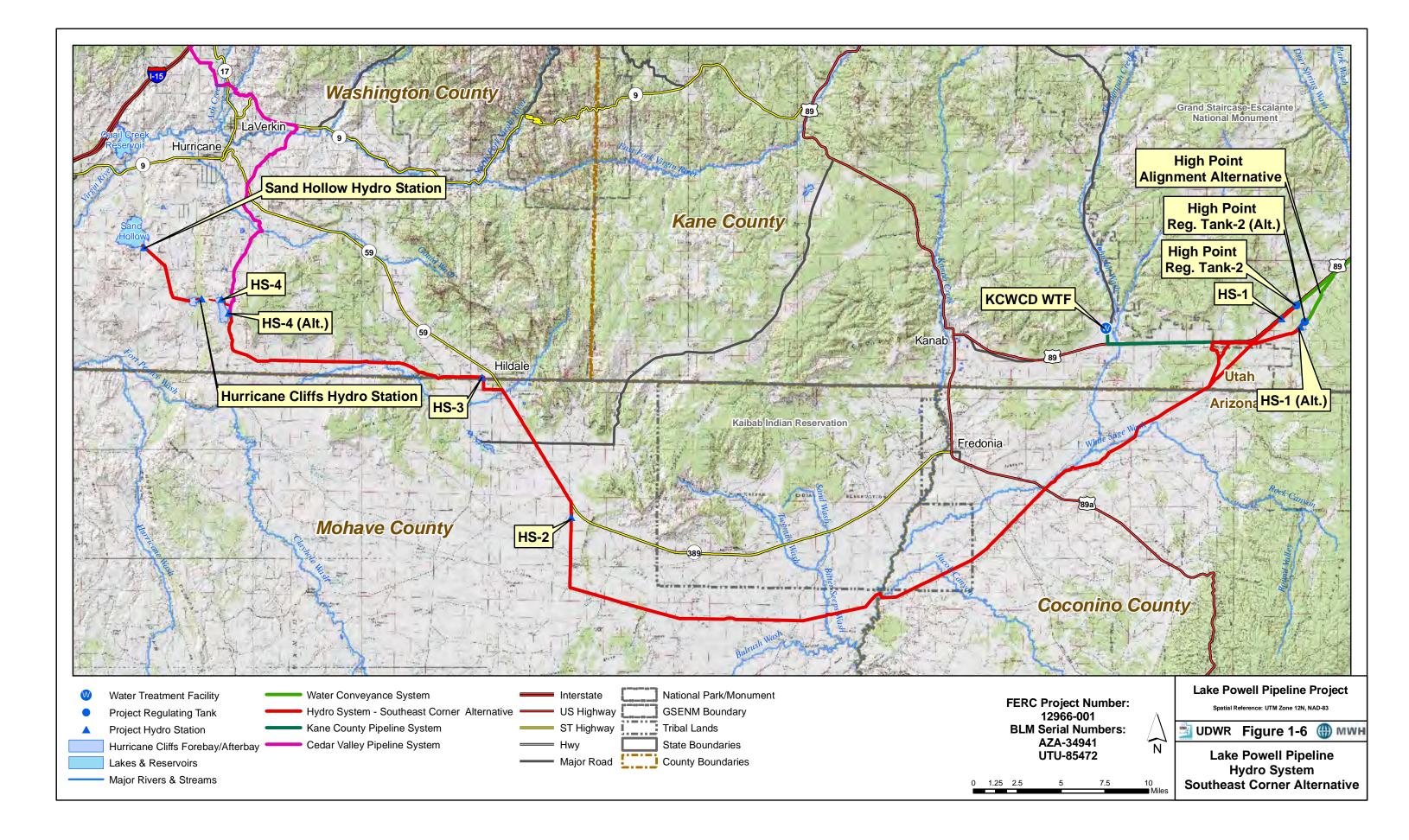
The Southeast Corner Alternative consists of five systems: Intake, Water Conveyance, Hydro, Kane County Pipeline, and Cedar Valley Pipeline. The Intake, Water Conveyance, Kane County Pipeline and Cedar Valley Pipeline systems would be the same as described for the South Alternative.

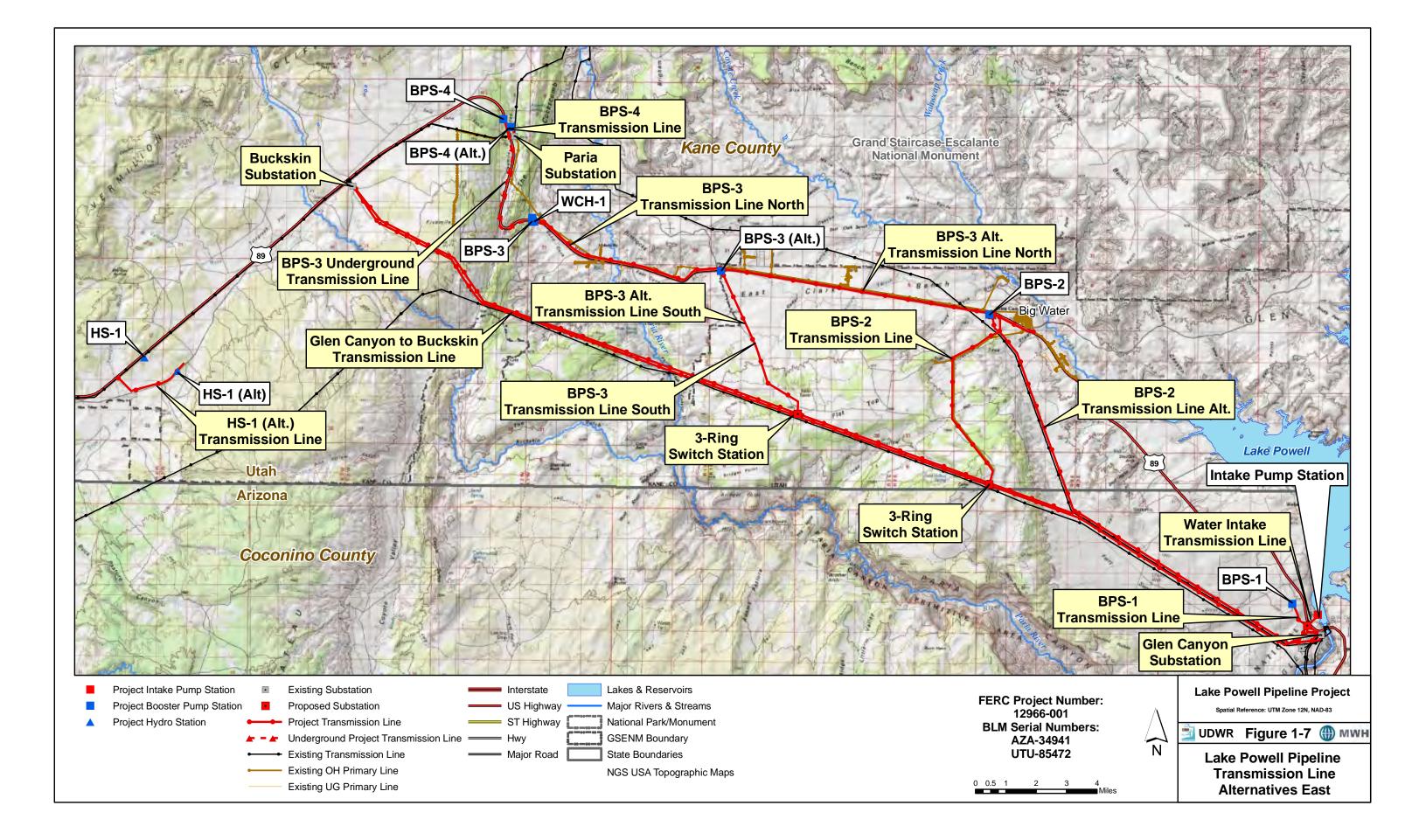
The **Hydro System** would be the same as described for the South Alternative between High Point Regulating Tank-2 and the east boundary of the Kaibab-Paiute Indian Reservation. The penstock alignment would parallel the north side of the Navajo-McCullough Transmission Line corridor in Coconino County, Arizona through the southeast corner of the Kaibab Indian Reservation for about 3.8 miles and then follow the South Alternative alignment south of the south boundary of the Kaibab-Paiute Indian Reservation, continuing to Sand Hollow Reservoir (Figure 1-6).

1.2.4 Transmission Line Alternatives

Transmission line alternatives include the Intake (3 alignments), BPS-1, Glen Canyon to Buckskin, Buckskin Substation upgrade, Paria Substation upgrade, BPS-2, BPS-2 Alternative, BPS-3 North, BPS-3 South, BPS-3 Underground, BPS-3 Alternative North, BPS-3 Alternative South, BPS-4, BPS-4 Alternative, HS-1 Alternative, HS-2 South, HS-3 Underground, HS-4, HS-4 Alternative, Hurricane Cliffs Afterbay to Sand Hollow, Hurricane Cliffs Afterbay to Hurricane West, Sand Hollow to Dixie Springs, Cedar Valley Pipeline booster pump stations, and Cedar Valley Water Treatment Facility.

The proposed new **Intake Transmission Line** would begin at Glen Canyon Substation and run parallel to U.S. 89 for about 2,500 feet to a new switch station, cross U.S. 89 at the Intake access road intersection and continue northeast to the Intake substation. This 69 kV transmission line would be about 0.9 mile long in Coconino County, Arizona (Figure 1-7). One alternative alignment would run parallel to an existing 138 kV transmission line to the west, turn north to the new switch station, cross U.S. 89 at the Intake access road intersection and continue northeast to the Intake substation. This 69 kV transmission line alternative would be about 1.2 miles long in Coconino County, Arizona (Figure 1-7). Another alternative alignment would bifurcate from an existing transmission line and run west, then northeast to the new switch station, cross U.S. 89 at the Intake substation. This 69 kV transmission line alternative alignment would bifurcate from an existing transmission line and run west, then northeast to the new switch station, cross U.S. 89 at the Intake substation. This 69 kV transmission line alternative alignment would bifurcate from an existing transmission line and run west, then northeast to the Intake substation. This 69 kV transmission line alternative would be about 1.3 miles long in Coconino County, Arizona (Figure 1-7).


The proposed new **BPS-1 Transmission Line** would begin at the new switch station located on the south side of U.S. 89 and parallel the LPP Water Conveyance System alignment to the BPS-1 substation west of U.S. 89. This 69 kV transmission line would be about 1 mile long in Coconino County, Arizona (Figure 1-7).


The proposed new **Glen Canyon to Buckskin Transmission Line** would consist of a 230 kV transmission line from the Glen Canyon Substation to the Buckskin Substation, running parallel to the existing 138 kV transmission line. This transmission line upgrade would be about 36 miles long through Coconino County, Arizona and Kane County, Utah (Figure 1-7).

The existing **Buckskin Substation** would be upgraded as part of the proposed project to accommodate the additional power loads from the new 230 kV Glen Canyon to Buckskin transmission line. The substation upgrade would require an additional 5 acres of land within the GSENM adjacent to the existing substation in Kane County, Utah (Figure 1-7).

The existing **Paria Substation** would be upgraded as part of the proposed project to accommodate the additional power loads to BPS-4 Alternative. The substation upgrade would require an additional 2 acres of privately-owned land adjacent to the existing substation in Kane County, Utah (Figure 1-7).

The proposed new **BPS-2 Transmission Line** alternative would consist of a new 3-ring switch station along the existing 138 kV Glen Canyon to Buckskin Transmission Line and a new transmission line from the switch station to a new substation west of Big Water and a connection to BPS-2 substation in Kane

County, Utah. The new transmission line would parallel an existing distribution line that runs northwest, north and then northeast to Big Water. This new 138 kV transmission line alternative would be about 7 miles long across Utah SITLA-administered land, with a 138 kV connection to the BPS-2 substation (Figure 1-7).

The new **BPS-2 Alternative Transmission Line** would consist of a new 138 kV transmission line from Glen Canyon Substation parallel to the existing Rocky Mountain Power 230 kV transmission line, connecting to the BPS-2 substation west of Big Water. This new 138 kV transmission line alternative would be about 16.5 miles long in Coconino County, Arizona and Kane County, Utah crossing National Park Service-administered land, BLM-administered land and Utah SITLA-administered land (Figure 1-7).

The new **BPS-3 Transmission Line North** alternative would consist of a new 138 kV transmission line from BPS-2 paralleling the south side of U.S. 89 within the Congressionally designated utility corridor west to BPS-3 at the east side of the Cockscomb geological feature. This new 138 kV transmission line alternative would be about 15.7 miles long in Kane County, Utah (Figure 1-7).

The new **BPS-3 Transmission Line South** alternative would consist of a new 3-ring switch station along the existing 138 kV Glen Canyon to Buckskin Transmission Line and a new transmission line from the switch station north along an existing BLM road to U.S. 89 and then west along the south side of U.S. 89 within the Congressionally designated utility corridor to BPS-3 at the east side of the Cockscomb. This new 138 kV transmission line alternative would be about 12.3 miles long in Kane County, Utah (Figure 1-7).

The new **BPS-3 Underground Transmission Line** alternative would consist of a new buried 24.9 kV transmission line (2 circuits) from the upgraded Paria Substation to BPS-3 on the east side of the Cockscomb geological feature. This new underground transmission line would be parallel to the east and south side of U.S. 89 and would be about 4.1 miles long in Kane County, Utah (Figure 1-7).

The new **BPS-3** Alternative Transmission Line North alternative would consist of a new 138 kV transmission line from BPS-2 paralleling the south side of U.S. 89 west to BPS-3 Alternative near the GSENM east boundary within the Congressionally-designated utility corridor. This new 138 kV transmission line alternative would be about 9.3 miles long in Kane County, Utah (Figure 1-7).

The proposed new **BPS-3** Alternative Transmission Line South alternative would consist of a new 3ring switch station along the existing 138 kV Glen Canyon to Buckskin Transmission Line and a new transmission line from the switch station north along an existing BLM road to BPS-3 Alternative near the GSENM east boundary and within the Congressionally-designated utility corridor. This new 138 kV transmission line alternative would be about 5.9 miles long in Kane County, Utah (Figure 1-7).

The new **BPS-4 Transmission Line** alternative would begin at the upgraded Paria Substation and run parallel to the west side of U.S. 89 north to BPS-4 within the Congressionally designated utility corridor. This new 138 kV transmission line would be about 0.8 mile long in Kane County, Utah (Figure 1-7).

The proposed new **BPS-4 Alternative Transmission Line** would begin at the upgraded Paria Substation and run north to the BPS-4 Alternative. This 69 kV transmission line would be about 0.4 mile long in Kane County, Utah (Figure 1-7).

The proposed new **HS-1** Alternative Transmission Line would begin at the new HS-1 Alternative and run southwest parallel to the K4020 road and then northwest parallel to the K4000 road to the U.S. 89 corridor where it would tie into the existing 69 kV transmission line from the Buckskin Substation to the

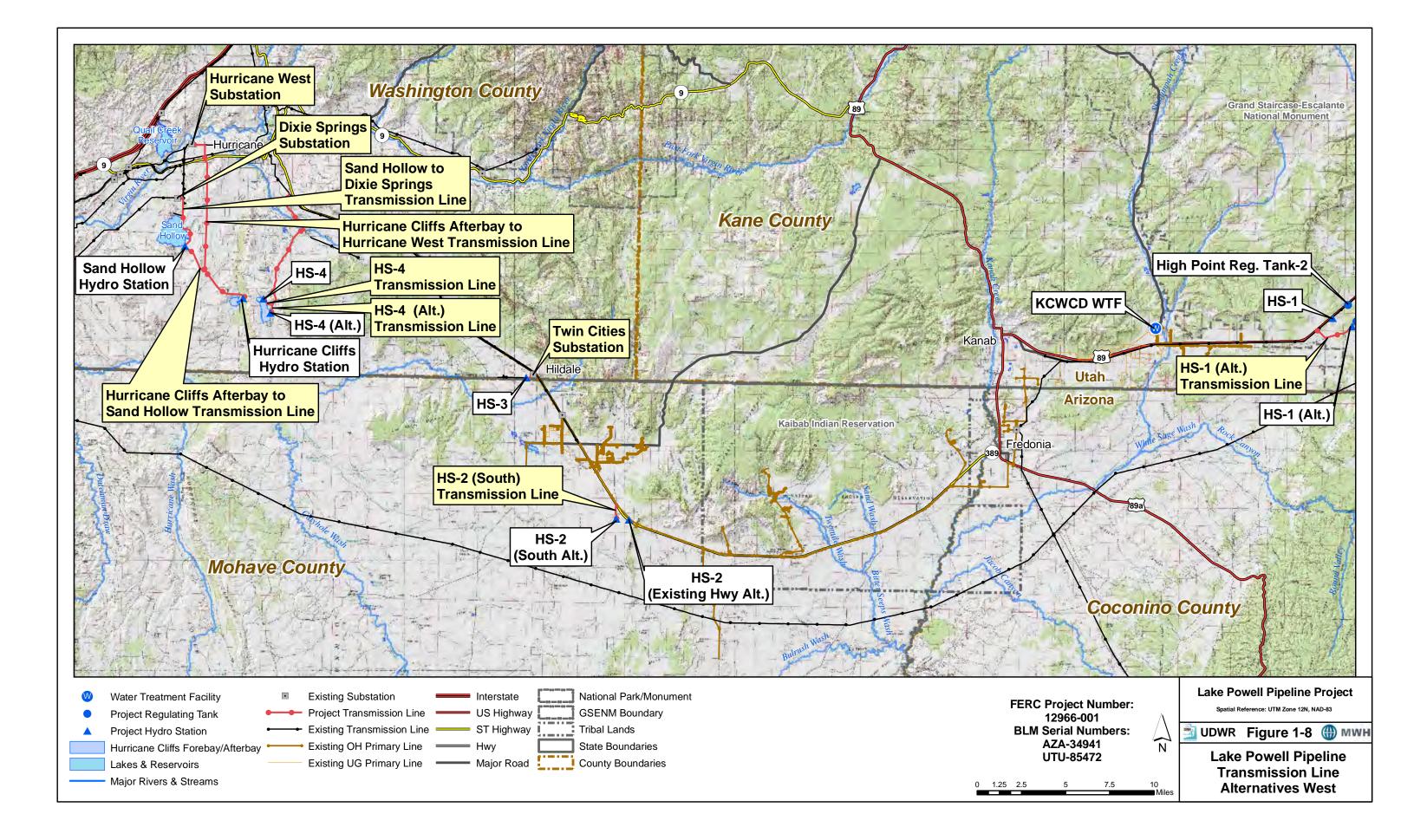
Johnson Substation. This 69 kV transmission line would be about 3 miles long in Kane County, Utah (Figure 1-7).

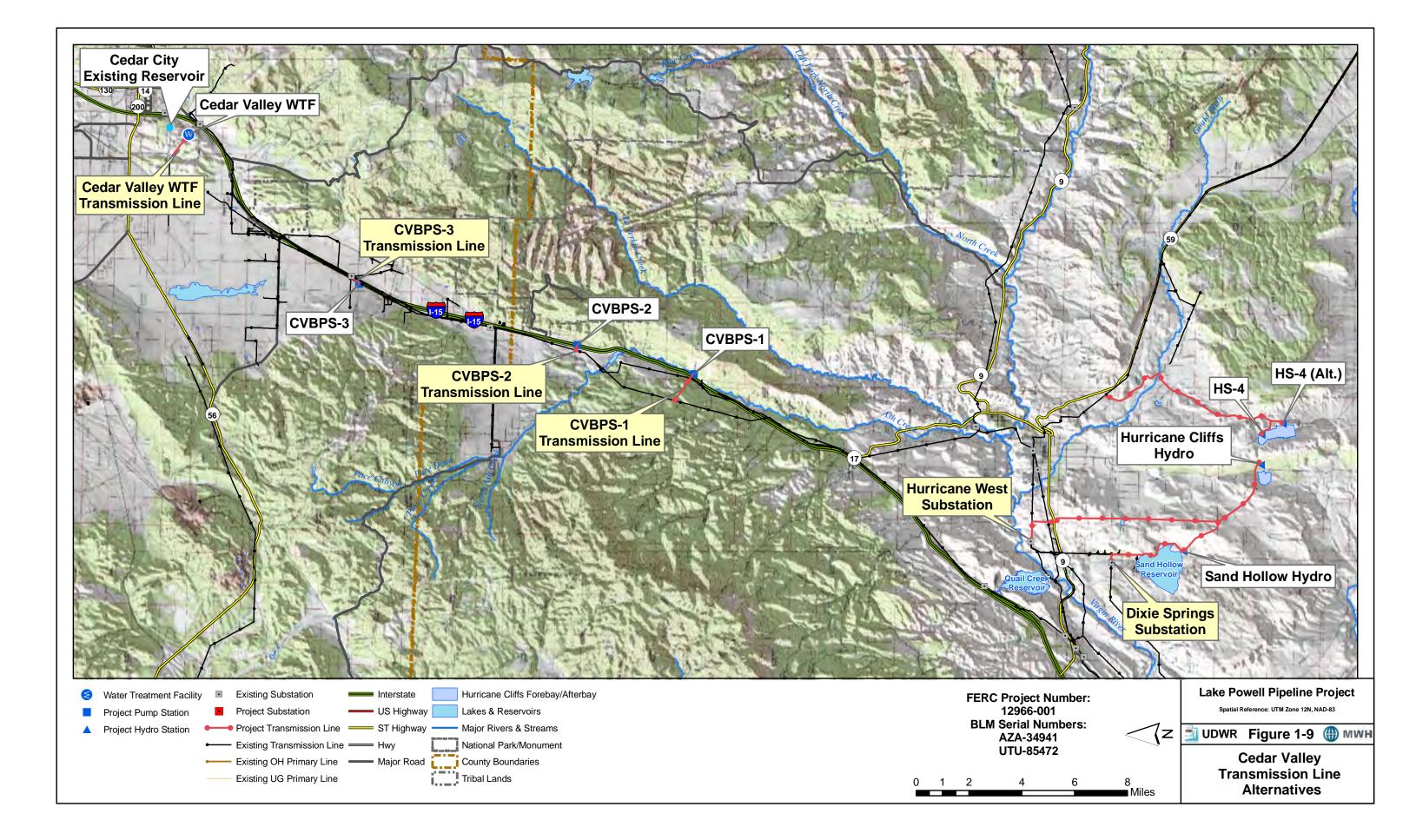
The proposed new **HS-2 South Transmission Line** alternative would connect the HS-2 hydroelectric station and substation along the South Alternative to an existing 138 kV transmission line paralleling Arizona State Route 389. This new 34.5 kV transmission line would be about 0.9 mile long in Mohave County, Arizona (Figure 1-8).

The proposed new **HS-3 Underground Transmission Line** would connect the HS-3 hydroelectric station and substation to the existing Twin Cities Substation in Hildale City, Utah. The new 12.47 kV underground circuit would be about 0.6 mile long in Washington County, Utah (Figure 1-8).

The proposed new **HS-4 Transmission Line** would consist of a new transmission line from the HS-4 hydroelectric station and substation north along an existing BLM road to an existing transmission line parallel to Utah State Route 59. The new 69 kV transmission line would be about 8.2 miles long in Washington County, Utah (Figure 1-8).

The new **HS-4 Alternative Transmission Line** alternative would connect the HS-4 Alternative hydroelectric station and substation to an existing transmission line parallel to Utah State Route 59. The new 69 kV transmission line would be about 7.5 miles long in Washington County, Utah (Figure 1-8).


The proposed new **Hurricane Cliffs Afterbay to Sand Hollow Transmission Line** would consist of a new 69 kV transmission line from the Hurricane Cliffs peaking power plant and substation, and run northwest to the Sand Hollow Hydro Station substation. This new 69 kV transmission line would be about 4.9 miles long in Washington County, Utah (Figure 1-8).


The proposed new **Hurricane Cliffs Afterbay to Hurricane West Transmission Line** would consist of a new 345 kV transmission line from the Hurricane Cliffs pumped storage power plant and run northwest and then north to the planned Hurricane West 345 kV substation. This new 345 kV transmission line would be about 10.9 miles long in Washington County, Utah (Figure 1-8).

The proposed new **Sand Hollow to Dixie Springs Transmission Line** would consist of a new 69 kV transmission line from the Sand Hollow Hydro Station substation around the east side of Sand Hollow Reservoir and north to the existing Dixie Springs Substation. This new 69 kV transmission line would be about 3.4 miles long in Washington County, Utah (Figure 1-8).

The three **Cedar Valley Pipeline** booster pump stations would require new transmission lines from existing transmission lines paralleling the Interstate 15 corridor. The new CBPS-1 transmission line would extend southeast over I-15 from the existing transmission line to the booster pump station substation for about 1.3 miles in Washington County, Utah (Figure 1-9). The new CBPS-2 transmission line would extend east over I-15 from the existing transmission line to the booster pump station substation for about 0.2 mile in Washington County, Utah (Figure 1-9). The new CBPS-3 transmission line would extend west over I-15 from the existing transmission line and southwest along the west side of Interstate 15 to the booster pump station substation for about 0.6 mile in Iron County, Utah (Figure 1-9).

The **Cedar Valley Water Treatment Facility Transmission Line** would begin at an existing substation in Cedar City and run about 1 mile to the water treatment facility site in Iron County, Utah (Figure 1-9).

1.3 Summary Description of No Lake Powell Water Alternative

The No Lake Powell Water Alternative would involve a combination of developing remaining available surface water and groundwater supplies, developing reverse osmosis treatment of existing low quality water supplies, and reducing residential outdoor water use in the WCWCD and CICWCD service areas. This alternative could provide a total of 86,249 acre-feet of water annually to WCWCD, CICWCD and KCWCD for M&I use without diverting Utah's water from Lake Powell.

1.3.1 WCWCD No Lake Powell Water Alternative

The WCWCD would implement other future water development projects currently planned by the District, develop additional water reuse/reclamation, and convert additional agricultural water use to M&I use as a result of urban development in agricultural areas through 2020. Remaining planned and future water supply projects through 2020 include the Ash Creek Pipeline (5,000 acre-feet per year), Crystal Creek Pipeline (2,000 acre-feet per year), and Quail Creek Reservoir Agricultural Transfer (4,000 acre-feet per year). Beginning in 2020, WCWCD would convert agricultural water to secondary use and work with St. George City to maximize existing wastewater reuse, bringing the total to 96,258 acre-feet of water supply per year versus demand of 98,427 acre-feet per year, incorporating currently mandated conservation goals. The WCWCD water supply shortage in 2037 would be 70,000 acre-feet per year, 1,000 acre-feet more than the WCWCD maximum share of the LPP water. Therefore, the WCWCD No Lake Powell Water Alternative needs to develop 69,000 acre-feet of water per year to meet comparable supply and demand requirements as the other action alternatives.

The WCWCD would develop a reverse osmosis (RO) advanced water treatment facility near the Washington Fields Diversion in Washington County, Utah to treat up to 40,000 acre-feet per year of Virgin River water with high total dissolved solids (TDS) concentration and other contaminants. The RO advanced water treatment facility would produce up to 36,279 acre-feet per year of water suitable for M&I use. The WCWCD would develop the planned Warner Valley Reservoir to store the diverted Virgin River water, which would be delivered to the RO advanced water treatment facility. The remaining 3,721 acre-feet per year of brine by-product from the RO treatment process would require evaporation and disposal meeting State of Utah water quality regulations.

The remaining needed water supply of 32,721 acre-feet per year to meet WCWCD 2037 demands would be obtained by reducing and restricting outdoor residential water use in the WCWCD service area. The Utah Division of Water Resources (UDWR) estimated 2005 culinary water use for residential outdoor watering in the communities served by WCWCD was 97.4 gallons per capita per day (gpcd) (UDWR 2009). This culinary water use rate is reduced by 30.5 gpcd to account for water conservation attained from 2005 through 2020, yielding 66.9 gpcd residential outdoor water use available for conversion to other M&I uses. The equivalent water use rate reduction to generate 32,721 acre-feet per year of conservation is 56.6 gpcd for the 2037 population within the WCWCD service area. Therefore, beginning in 2020, the existing rate of residential outdoor water use would be gradually reduced and restricted to 10.3 gpcd, or an 89.4 percent reduction in residential outdoor water use.

The combined 36,279 acre-feet per year of RO product water and 32,721 acre-feet per year of reduced residential outdoor water use would equal 69,000 acre-feet per year of M&I water to help meet WCWCD demands through 2037.

1.3.2 CICWCD No Lake Powell Water Alternative

The CICWCD would implement other future groundwater development projects currently planned by the District, purchase agricultural water from willing sellers for conversion to M&I uses, and convert additional agricultural water use to M&I use as a result of urban development in agricultural areas through 2020. Remaining planned and future water supply projects through 2020 include additional groundwater development projects (3,488 acre-feet per year), agricultural conversion resulting from M&I development (3,834 acre-feet per year), and purchase agricultural water from willing sellers (295 acre-feet per year). Beginning in 2020, CICWCD would have a total 19,772 acre-feet of water supply per year versus demand of 19,477 acre-feet per year, incorporating required progressive conservation goals. The CICWCD water supply shortage in 2060 would be 11,470 acre-feet per year. Therefore, the CICWCD No Lake Powell Water Alternative needs to develop 11,470 acre-feet of water per year to meet comparable supply and demand limits as the other action alternatives.

The remaining needed water supply of 11,470 acre-feet per year to meet CICWCD 2060 demands would be obtained by reducing and restricting outdoor residential water use in the CICWCD service area. The UDWR estimated 2005 culinary water use for residential outdoor watering in the communities served by CICWCD was 84.5 gpcd (UDWR 2007). A portion of this residential outdoor water would be converted to other M&I uses. The equivalent water use rate to obtain 11,470 acre-feet per year is 67.8 gpcd for the 2060 population within the CICWCD service area. Therefore, the existing rate of residential outdoor water use would be gradually reduced and restricted to 16.7 gpcd beginning in 2023, an 80 percent reduction in the residential outdoor water use rate between 2023 and 2060. The 11,470 acre-feet per year of reduced residential outdoor water use would be used to help meet the CICWCD demands through 2060.

1.3.3 KCWCD No Lake Powell Water Alternative

The KCWCD would use existing water supplies and implement future water development projects including new groundwater production, converting agricultural water rights to M&I water rights as a result of urban development in agricultural areas, and developing water reuse/reclamation. Existing water supplies (4,039 acre-feet per year) and 1,994 acre-feet per year of new ground water under the No Lake Powell Water Alternative would meet projected M&I water demand of 6,033 acre-feet per year within the KCWCD service area through 2060. The total potential water supply for KCWCD is about 12,140 acre-feet per year (4,039 acre-feet per year existing culinary plus secondary supply, and 8,101 acre-feet per year potential for additional ground water development up to the assumed sustainable ground water yield) without agricultural conversion to M&I supply. Short-term ground water overdrafts and new storage projects (e.g., Jackson Flat Reservoir) would provide reserve water supply to meet demands during drought periods and other water emergencies.

1.4 Summary Description of the No Action Alternative

No new intake, water conveyance or hydroelectric features would be constructed or operated under the No Action Alternative. The Utah Board of Water Resources' Colorado River water rights consisting of 86,249 acre-feet per year would not be diverted from Lake Powell and would continue to flow into the Lake until the water is used for another State of Utah purpose or released according to the operating guidelines. Future population growth as projected by the Utah Governor's Office of Planning and Budget (GOPB) would continue to occur in southwest Utah until water and other potential limiting resources such as developable land, electric power, and fuel begin to curtail economic activity and population inmigration.

1.4.1 WCWCD No Action Alternative

The WCWCD would implement other future water development projects currently planned by the District, develop additional water reuse/reclamation, convert additional agricultural water use to M&I use as a result of urban development in agricultural areas, and implement advanced treatment of Virgin River water. The WCWCD could also limit water demand by mandating water conservation measures such as outdoor watering restrictions. Existing and future water supplies under the No Action Alternative would meet projected M&I water demand within the WCWCD service area through approximately 2020. The 2020 total water supply of about 96,528 acre-feet per year would include existing supplies, planned WCWCD water supply projects, wastewater reuse, transfer of Quail Creek Reservoir supplies, and future agricultural water conversion resulting from urban development of currently irrigated lands. Each future supply source would be phased in as needed to meet the M&I demand associated with the forecasted population. The No Action Alternative would not provide WCWCD with any reserve water supply (e.g., water to meet annual shortages because of drought, emergencies, and other losses). Maximum reuse of treated wastewater effluent for secondary supplies would be required to meet the projected M&I water demand starting in 2020. The No Action Alternative would not provide adequate water supply to meet projected water demands from 2020 through 2060. There would be a potential water shortage of approximately 139,875 acre-feet per year in 2060 under the No Action Alternative (UDWR 2011).

1.4.2 CICWCD No Action Alternative

The CICWCD would implement future water development projects including converting agricultural water rights to M&I water rights as a result of urban development in agricultural areas, purchasing "buy and dry" agricultural water rights to meet M&I demands, and developing water reuse/reclamation. The Utah State Engineer would act to limit existing and future ground water pumping from the Cedar Valley aquifer in an amount not exceeding the assumed sustainable yield of 37,600 ac-ft per year. Existing and future water supplies under the No Action Alternative meet projected M&I water demand within the CICWCD service area during the planning period through agricultural conversion of water rights to M&I use, wastewater reuse, and implementing "buy and dry" practices on irrigated agricultural land. Each future water supply source would be phased in as needed to meet the M&I demand associated with the forecasted population. The CICWCD No Action Alternative includes buying and drying of agricultural water rights covering approximately 8,000 acres between 2005 and 2060 and/or potential future development of West Desert water because no other potential water supplies have been identified to meet unmet demand. The No Action Alternative would not provide CICWCD with any reserve water supply (e.g., water to meet annual shortages because of drought, emergencies, and other losses) after 2010 (i.e., after existing supplies would be maximized).

1.4.3 KCWCD No Action Alternative

The KCWCD would use existing water supplies and implement future water development projects including new ground water production, converting agricultural water rights to M&I water rights as a result of urban development in agricultural areas, and developing water reuse/reclamation. Existing water supplies (4,039 acre-feet per year) and 1,994 acre-feet per year of new ground water under the No Action Alternative would meet projected M&I water demand of 6,033 acre-feet per year within the KCWCD service area through 2060. The total potential water supply for KCWCD is about 12,140 acre-feet per year (4,039 acre-feet per year existing culinary plus secondary supply, and 8,101 acre-feet per year potential for additional ground water development up to the assumed sustainable ground water yield) without agricultural conversion to M&I supply. Short-term ground water overdrafts and new storage projects (e.g., Jackson Flat Reservoir) would provide reserve water supply to meet demands during drought periods and other water emergencies.

1.5 Identified Issues

Wetlands are areas that meet the criteria for soils, hydrology, and vegetation as defined in the 1987 U.S. Army Corps of Engineers (USACE) Wetland Delineation Manual (USACE 1987). These are areas that are inundated or saturated by surface or groundwater at a duration and frequency sufficient to support vegetation typically adapted for saturated soil conditions. Wetland areas typically comprise marshes, shallow swamps, lakeshores, wet meadows, and riparian areas and are often along or adjacent to perennial or intermittent water bodies.

Riparian areas are vegetated zones that form a transition between permanently saturated and upland areas and typically exhibit vegetation and physical characteristics associated with permanent sources of surface or subsurface water. These areas may or may not meet all three USACE criteria for wetlands. The Project alternative alignments would cross a number of riparian areas along, adjacent to, or contiguous with perennial and intermittent rivers or water bodies. Although accounting for a small percentage of the overall Project area, riparian areas are among the most productive and important ecosystems in the Project vicinity; as a general rule riparian areas have a greater diversity of flora and fauna than adjacent uplands. Riparian systems filter and purify water, reduce sediment loads, enhance soil stability, provide microclimatic moderation when contrasted with extremes in adjacent areas, and can contribute to groundwater recharge and base flow.

Wetlands that are determined to be hydrologically connected to "waters of the United States" are considered jurisdictional waters, and permitting is required through the USACE if they are impacted. Ephemeral and intermittent streams or washes, which are common in the study area, often do not exhibit the presence of vegetation dependant on saturated soils and are infrequently considered wetlands under the USACE criteria. However, under the recent Supreme Court ruling in the Rapanos case, these waters may be considered jurisdictional under the Clean Water Act (USEPA and USACE 2007). In non-vegetated area, jurisdiction is determined by the "ordinary high water mark."

Although some riparian areas may not be regulated as wetlands and other jurisdictional waters, they are of interest because they provide important habitat for wildlife, including refuge and forage areas. This is also the case for wetlands that might not be considered jurisdictional waters. Therefore, the study report will evaluate all wetlands and riparian areas found in the study area, regardless of their regulatory status.

1.5.1 Study Goals and Objectives

The goals of the wetland and riparian report are to identify and determine impacts to wetlands, riparian areas, and jurisdictional waters from Project construction and operation. Information regarding potential wetland and riparian impacts and concerns will be used to guide decisions in the Project design, construction, operation and maintenance to minimize impacts from the Project.

Specific wetland and riparian related objectives include determination of how construction of the Project and operation of the Project facilities will affect wetland, riparian and jurisdictional water resources along the alternative alignments. Following are the primary objectives of the wetlands and riparian study:

- Evaluate baseline conditions in the study area by mapping and describing wetlands, riparian areas, and other potentially jurisdictional areas (intermittent and ephemeral drainages), and by performing a wetland functions and values assessment.
- Identify and avoid impacts on wetlands from Project construction, operation and maintenance activities

- Determine which "dry" crossings are "jurisdictional waters of the United States" during intermittent flows given the June 2007 Guidance on the Rapanos Decision (USEPA and USACE 2007)
- Identify and minimize construction impacts on riparian areas and other potentially jurisdictional resources (intermittent and ephemeral drainages)
- Identify and minimize indirect hydrologic and water quality impacts to wetlands, riparian areas, and other potentially jurisdictional areas from releases at blowoff valves
- Control the spread of invasive species such as tamarisk as a result of the Project
- Quantify potential temporary or permanent loss of wetland area as a result of the Project
- Evaluate potential changes in the function of wetlands, including changes in plant communities, soils, or hydrology as a result of the Project
- Identify and quantify potential temporary or permanent loss of or impact to non-wetland riparian areas or jurisdictional waters
- Identify and document in a mitigation plan incorporated into the study report mitigation measures and concepts for mitigating adverse impacts caused by Project construction and operation on wetlands and riparian areas

1.5.1.1 Jurisdictional Determination

In a meeting on June 18, 2008 with the USACE and LPP project team, USACE provided the following feedback on determining jurisdictional waters in the study area:

- Drainages connected to a navigable waterway such as Lake Powell are considered jurisdictional because of interstate commerce. USACE considers dry washes and drainage-ways jurisdictional if they are within several miles of a navigable waterway, which is regulated under Section 10 of the Rivers and Harbors Act. USACE uses their discretion on the distance a drainage-way is from a navigable waterway to determine jurisdiction.
- Perennial streams and rivers (i.e. Paria River, La Verkin Creek, Virgin River) are under the jurisdiction of the USACE through Section 404 of the Clean Water Act.
- Wetlands are under the jurisdiction of the USACE unless they don't meet the jurisdictional criteria (and Rapanos decision) with regard to Section 404 of the Clean Water Act.
- USACE does not have jurisdiction for pipelines installed above the mean high water mark (i.e. aerial crossings) or pipelines installed by horizontal subsurface bore and jack or microtunnel methods.
- Some drainage-ways and washes may not be jurisdictional because they are not connected to a navigable waterway or involved in interstate commerce. However, the USACE indicated that jurisdictional studies should be performed on all drainages and washes because the USACE will make their jurisdictional determination based on a number of different factors, and the safe assumption is that the drainage course is jurisdictional until determined that it is not jurisdictional.

In a June 5, 2007 guidance memo titled Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in <u>Rapanos v. United States & Carabell v. United States</u> (USEPA and USACE 2007), agencies criteria for jurisdictional determination are summarized as follows:

Agencies will assert jurisdiction over the following waters:

- Traditional navigable waters
- Wetlands adjacent to traditional navigable waters

- Non-navigable tributaries of traditional navigable waters that are relatively permanent where the tributaries typically flow year-round or have continuous flow at least seasonally (e.g., typically three months)
- Wetlands that directly abut such tributaries

The agencies will decide jurisdiction over the following waters based on a fact-specific analysis to determine whether they have a significant nexus with a traditional navigable water:

- Non-navigable tributaries that are not relatively permanent
- Wetlands adjacent to non-navigable tributaries that are not relatively permanent
- Wetlands adjacent to but that do not directly abut a relatively permanent non-navigable tributary

The agencies generally will not assert jurisdiction over the following features:

- Swales or erosional features (e.g., gullies, small washes characterized by low volume, infrequent, or short duration flow)
- Ditches (including roadside ditches) excavated wholly in and draining only uplands and that do not carry a relatively permanent flow of water

The agencies will apply the significant nexus standard as follows:

- A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by all wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical and biological integrity of downstream traditional navigable waters
- Significant nexus includes consideration of hydrologic and ecologic factors

1.6 Impact Topics

The following impact topics are addressed in the Wetlands and Riparian Resources Study Report:

- Wetlands
- Riparian Areas
- Jurisdictional Waters
- Permitting Requirements

Chapter 2 Methodology

2.1 Data Used

2.1.1 Background/Literature Review

The wetlands and riparian analyses included the following:

- Geographic Information System (GIS) layer with study area of the project alternatives
- Wetland mapping (i.e. National Wetland Inventory [NWI] maps), where available
- Soils mapping, including locations of hydric soils, where available
- Hydrologic maps showing locations of intermittent, ephemeral, and permanent waterways and their receiving bodies, including U.S. Geological Survey (USGS) topographic maps
- Aerial photography (2007 one-meter National Agricultural Imagery Program [NAIP] imagery in Arizona and 2009 one-meter NAIP imagery in Utah) and video
- USGS stream gauge data, where available
- Vegetation mapping, including identification of riparian areas

2.1.2 Field Data

Data collected in the field included evaluation of vegetation, soils, and hydrology at stream crossings and washes. Scour chains and crest gages were installed in washes and streams at selected locations to collect additional hydrological data. The boundaries of wetland and riparian areas and channel cross-sections were mapped in the field using GPS instruments with data conversion to GIS.

2.1.2.1 Wetland Determination

A wetland determination was performed in all areas containing wetland and/or riparian vegetation following the methodology outlined in the 1987 USACE Wetland Delineation Manual (USACE 1987) and the Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual for the Arid West (USACE 2006). This included an evaluation of vegetation, soils, and hydrology. Data were collected at a paired set of points at the wetland or riparian feature, including excavation of soil pits to 18 inches below ground surface, or at refusal, if refusal occurred at less than 18 inches. The attached wetland delineation report (Appendix A) contains more specific information.

2.1.2.2 Functional Assessment

Functional assessments were completed for all areas with riparian and/or wetland vegetation. Washes without wetland/riparian vegetation were documented photographically. Functions are the ecological processes performed by wetlands. In contrast to wetland functions, values are subjective descriptions of the worth or quality of a wetland from a societal perspective, including aesthetics and recreational opportunities. There are various methods of evaluating wetland functions and values, including the Utah Department of Transportation (UDOT) Wetland Functional Assessment (Johnson et al. 2006), Wetland Evaluation Technique (WET) (Adamus et al.1987), Oregon Freshwater Wetland Assessment Methodology (Roth et al. 1996), and professional judgment. The basic approach in these methodologies is to evaluate a wetland against a checklist of specific functions and values based on a visual assessment of its physical, biological, hydrological, and societal characteristics.

The UDOT Wetland Functional Assessment was designed for highway projects in portions of the study area, and this method was selected as a basis for assessing wetland function in this study. The functional assessment was modified to specifically address the study area (i.e. locations in Utah and Arizona, with most areas being riparian areas and not meeting wetland criteria). The UDOT Wetland Functional Assessment method assigns a numeric rating to all evaluated wetlands and riparian areas to allow for comparison of the overall biological and hydrological functional level of different features. A values assessment also allows for comparison of the relative importance of visual quality and recreational/educational values between features.

In addition to the UDOT Wetland Functional Assessment Method, Proper Functioning Condition (PFC) was assessed for all areas with wetland and/or riparian vegetation. The PFC method used in this study was developed by The Bureau of Land Management (BLM), the Fish and Wildlife Service (FWS), and the Natural Resources Conservation Service (NRCS) (BLM 2003, 1998). This method uses a qualitative checklist to assess the condition of riparian and wetland areas by evaluating hydrology, vegetation, and soils attributes and processes.

2.1.2.3 Scour Chains and Crest Gages

Scour chains were installed in washes and streams that would be crossed by the Lake Powell Pipeline to measure bed scour depth, sediment deposition, and bed aggradation or degradation following peak runoff events. Each scour chain consisted of a 24-inch long metal chain with 1.2-inch long links attached to a duck-bill soil anchor. The soil anchor was driven vertically into the streambed at the proposed pipeline crossing, with the top link of the chain matching the stream bed grade. During precipitation events resulting in flow through the wash or stream, sediments scoured from the channel bed at the scour chain location exposed the chain and deflected it in the flow direction. The length of chain left horizontal in the channel bed following the runoff event indicated the depth of scour. Sediment deposited over the top of the scour chain indicated the amount of sediment fill during and after a flow and scour event. If the sediment fill over the chain was greater than the length of the chain was less than the length of chain installed in the bed, then this indicated a net decrease in the channel bed elevation or bed degradation. Scour chains were monitored periodically during the field studies and measurements were recorded in field notebooks. The scour chains were reset to vertical positions following each measurement.

Crest gages were installed in washes and streams near scour chains to measure the peak flow stage during the period between monitoring trips. The crest gage site was selected based on a straight channel reach with an upstream approach of at least 100 feet, uniform cross section and channel slope, and consistent channel bed and bank conditions. Each crest gage consisted of a 24-inch long, one-inch diameter PVC pipe with end caps, holes drilled near each end of the pipe to allow water and air to move freely, cork dust placed in the bottom end of the pipe, a four-foot long steel rebar, and plastic electrical ties to attach the pipe to the rebar. The rebar was driven vertically into the streambed and the PVC pipe was attached vertically to the rebar with the ties, with the bottom end cap matching the streambed grade. During precipitation events resulting in flow through the wash or stream, the water level would fill the pipe and carry the cork dust to the highest flow stage, leaving a residue on the pipe sides. The cork dust ring was measured and recorded from the bottom of the crest gage to indicate the peak flow depth at the representative cross section during the period since the previous monitoring trip.

Stream channel cross sections and channel bed profile were mapped in each monitoring reach containing the crest gage and scour chain with a mapping grade GPS instrument. The GPS data were analyzed to develop representative cross sections and the channel bed slope for use in calculating peak flows using the crest gage data.

Scour chains were installed in, monitored, and then removed from the washes and streams listed in Table 2-1.

Table 2-1 Scour Chains Installed and Removed During Field Surveys					
	Date	Date			
Wash or Stream Description	Installed	Removed			
Ash Creek	7/21/2009	12/15/2011			
South Forebay Wash	7/22/2009	Lost in 2009			
Bitter Seeps Wash	7/22/2009	12/14/2011			
Two Mile Wash	7/23/2009	12/14/2011			
Cottonwood Creek	7/23/2009	12/14/2011			
Jacob Canyon at Kanab Creek	7/23/2009	12/14/2011			
Kanab Creek at Jacob Canyon	7/23/2009	12/14/2011			
Wash west of Greenhaven	7/24/2009	12/13/2011			
2 nd Wash west of Greenhaven	7/24/2009	12/13/2011			
Wash west of Blue Pool Wash	7/24/2009	Lost in 2010			
Sand Gulch near confluence w/Paria River	7/24/2009	12/13/2011			
Paria River, north side of bridge	7/24/2009	Lost in 2010			
Johnson Wash	7/24/2009	12/13/2011			

Crest gages were installed in, monitored, and then removed from the washes and streams listed in Table 2-2.

Table 2-2 Crest Gages Installed and Removed During Field Surveys					
	Date	Date			
Wash or Stream Description	Installed	Removed			
Ash Creek	7/21/2009	12/15/2011			
South Forebay Wash	7/22/2009	12/14/2011			
Bitter Seeps Wash	7/22/2009	12/14/2011			
Jacob Canyon at Kanab Creek	7/23/2009	12/14/2011			
Kanab Creek at Jacob Canyon	7/23/2009	12/14/2011			
Wash west of Greenhaven	7/24/2009	12/13/2011			
Wash west of Blue Pool Wash	7/24/2009	12/13/2011			
Paria River, north side of bridge	7/24/2009	12/13/2011			
Johnson Wash	7/24/2009	4/20/2010*			
Note: *Crest gage torn from rebar by livestock, 1	emoved from chan	nel.			

-

2.2 Impact Analysis Methodology

Data collected during initial data review and field survey results were used to evaluate criteria in the 2007 Guidance on the Rapanos Decision (USEPA and USACE 2007) and consultation with the USACE and USEPA to determine which waters and waterways may be jurisdictional and those that are likely to not meet criteria for jurisdictional waters.

The description of baseline conditions was determined from an evaluation of existing mapped data and the results of field surveys to identify and delineate existing wetlands, riparian areas and other jurisdictional waters, characterize wetland hydrology and hydrogeological settings, and determine wetland and riparian area functions within the potential impact area.

Impacts on wetland, riparian areas, and jurisdictional waters were analyzed for each of the alternative alignments. These impacts were measured by calculating the area within the study area and estimating potential changes in wetland function or value.

Impacts of groundwater level changes on wetland hydrology were estimated qualitatively for wetlands and riparian areas using the results of the groundwater resources analysis. The results of the surface water hydrology analysis, including impacts from intermittent blowoff valve releases, were used to qualitatively determine if wetlands, riparian areas, and jurisdictional waters might be reduced or enhanced because of changes in surface water levels in streams and canals. Results from analyses of soils and vegetation along with review of proposed stormwater pollution prevention and other construction best management practices were evaluated to determine potential results to wetlands, riparian areas, and jurisdictional waters from sedimentation or introduction of non-native or invasive plant species.

The baseline wetland functions and values assessment information was used to characterize the existing wetland resources in the impact area of influence and to assess the effects and significance of potential changes from project-related activities. The functional assessment also was used to evaluate potential mitigation opportunities, including wetland enhancement and restoration.

The wetlands, riparian areas, and jurisdictional waters cumulative impacts analysis addresses the combined impacts of the alternatives and any past or future proposed or planned actions that have or are likely to affect the wetland, riparian areas, and jurisdictional waters in the impact area.

Chapter 3 Affected Environment (Baseline Conditions)

3.1 Study Area

The study area includes the entire length of the alternative alignments and transmission corridors, specifically the following features:

- Any wetland, riparian, or other potentially jurisdictional areas (including intermittent and ephemeral drainages) directly affected by Project feature construction or operations
- Any stream or river and associated corridor that would be subject to water discharges or flow alterations
- Any new wetlands created or developed in Project hydroelectric forebay or afterbay facilities
- Any wetland, riparian or other potentially jurisdictional area (including intermittent and ephemeral drainages) affected by transmission line construction and maintenance

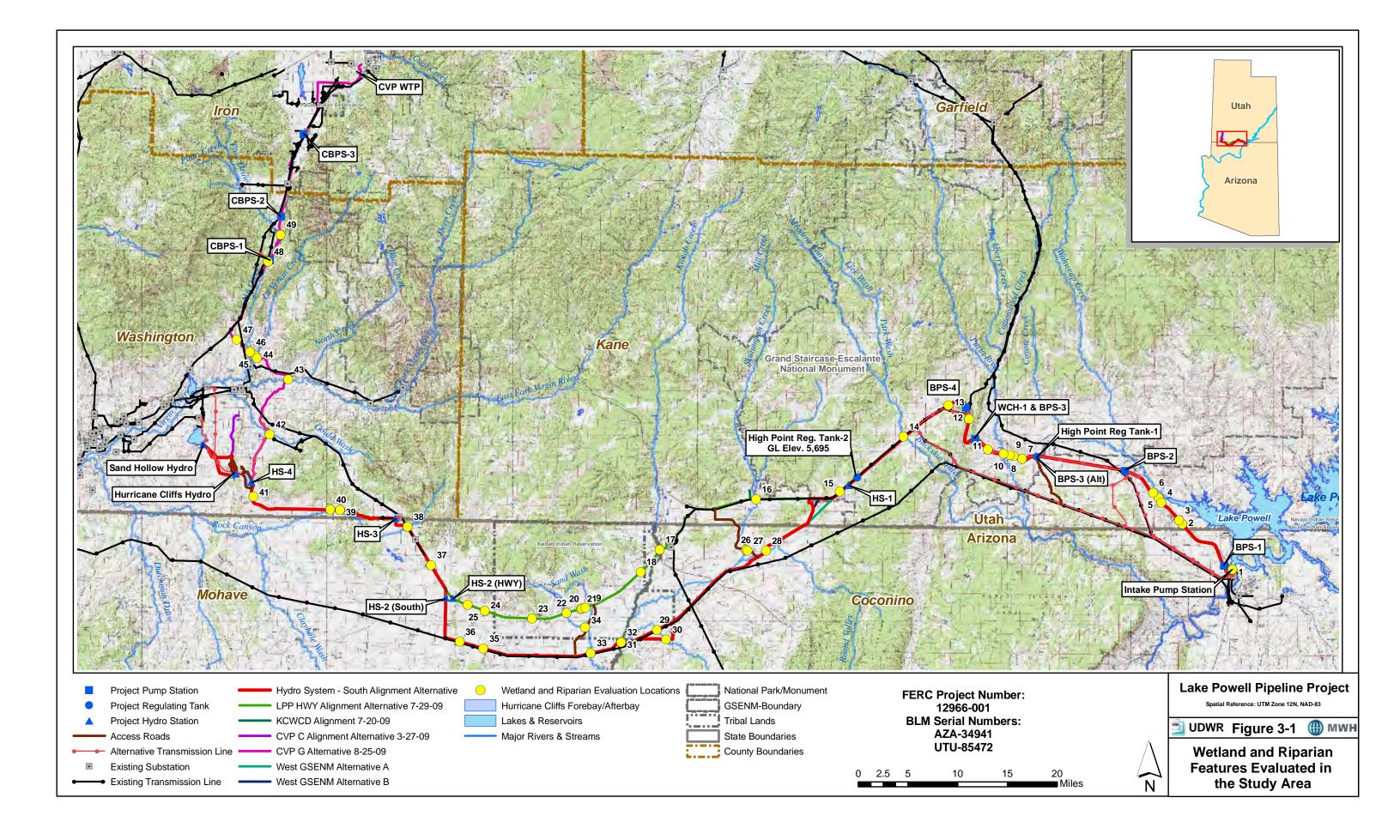
3.2 Overview

The following sections discuss wetlands, riparian areas, and jurisdictional waters observed in the study area. There is some overlap in these features, i.e. one wetland (meeting USACE three-parameter criteria) was found in the study area, and this wetland also met the definitions of riparian area and jurisdictional waters used in this study. Many, but not all, riparian areas discussed in this chapter are identified as jurisdictional waters. Jurisdictional waters identified in this chapter include wetland, riparian areas, and some areas that meet neither criteria. Table 3-1 summarizes the lakes, rivers, streams and washes evaluated during the July 2009 field surveys. Locations of these features are depicted in Figure 3-1 (refer also to Map Key field in Table 3-1).

Table 3-1 Summary of Features Evaluated in Study Area Page 1 of 4						
Map Key	Watershed	Lakes, Rivers, Streams, Washes	Location	USGS Topo mapping	Tributary to	Water Observed in Feature During July 2009 Field Surveys
1	Lower Lake Powell	Lake Powell Intake	Coconino County, AZ	Reservoir	N/A	Yes
2	Lower Lake Powell	Wash 1 West of Greenhaven	Kane County, UT	Intermittent stream	Lake Powell	No
3	Lower Lake Powell	Wash 2 West of Greenhaven	Kane County, UT	Intermittent stream	Lake Powell	No
4	Lower Lake Powell	Blue Pool Wash	Kane County, UT	Intermittent stream	Wahweap Creek	No
5	Lower Lake Powell	West of Blue Pool Wash	Kane County, UT	Perennial pond/wetland fed by intermittent stream	Wahweap Creek	No

	Table 3-1 Summary of Features Evaluated in Study Area						
Map Key	Watershed	Lakes, Rivers, Streams, Washes	Location	USGS Topo mapping	Tributary to	Page 2 of 4 Water Observed in Feature During July 2009 Field Surveys	
6	Lower Lake Powell	Wash 2 West of Blue Pool Wash (2nd Wash East of Big Water)	Kane County, UT	Intermittent stream	Wahweap Creek	No	
7	Paria River	Grand Staircase Escalante National Monument trailhead wash	Kane County, UT	Intermittent stream	Paria River	No	
8	Paria River	Wash west of Grand Staircase Escalante National Monument trailhead wash	Kane County, UT	Intermittent stream	Paria River	No	
9	Paria River	2nd wash west of Grand Staircase Escalante National Monument trailhead wash (wash east of Paria River)	Kane County, UT	Intermittent stream	Paria River	No	
10	Paria River	Paria River	Kane County, UT	Perennial stream	Colorado River	Yes	
11	Paria River	Sand Gulch Highway Crossing	Kane County, UT	Intermittent stream	Paria River	No	
12	Paria River	Sand Gulch west of Cockscomb	Kane County, UT	Intermittent stream	Buckskin Gulch	No	
13	Paria River	Sand Gulch 2 nd crossing west of Cockscomb	Kane County, UT	Intermittent stream	Buckskin Gulch	No	
14	Paria River	Buckskin Gulch (also known as Kitchen Corral Wash, Kaibab Gulch)	Kane County, UT	Perennial stream	Paria River	No	
15	Kanab Creek	Petrified Hollow Wash (drainage west of HS1)	Kane County, UT	Perennial stream	White Sage Wash	No	
16	Kanab Creek	Johnson Wash	Kane County, UT	Perennial stream	Kanab Creek	No	
17	Kanab Creek	Kanab Creek at Fredonia	Mohave County, AZ	Perennial stream	Colorado River	No	
18	Kanab Creek	Cottonwood Creek	Mohave County, AZ	Perennial stream	Kanab Creek	No	
19	Kanab Creek	3rd Wash east of Two Mile Wash	Mohave County, AZ	Perennial stream	Sand Wash -> Two Mile Wash	No	
20	Kanab Creek	2nd Wash east of Two Mile Wash	Mohave County, AZ	Perennial stream	Sand Wash -> Two Mile Wash	No	
21	Kanab Creek	1st Wash east of Two Mile Wash	Mohave County, AZ	Perennial stream	Sand Wash -> Two Mile Wash	No	
22	Kanab Creek	Two Mile Wash	Mohave County, AZ	Perennial stream	Bitter Seeps Wash	No	

	Table 3-1 Summary of Features Evaluated in Study Area						
Map Key	Watershed	Lakes, Rivers, Streams, Washes	Location	USGS Topo mapping	Tributary to	Page 3 of 4 Water Observed in Feature During July 2009 Field Surveys	
23	Kanab Creek	Drainage West of Pipe Springs National Monument	Mohave County, AZ	Perennial stream	Bitter Seeps Wash	No	
24	Kanab Creek	1st drainage west of Kaibab Indian Reservation	Mohave County, AZ	Perennial stream	Pipe Valley Wash -> Bulrush Wash -> Kanab Creek	No	
25	Kanab Creek	2nd drainage west of Kaibab Indian Reservation	Mohave County, AZ	Perennial stream	Pipe Valley Wash -> Bulrush Wash -> Kanab Creek	No	
26	Kanab Creek	White Sage Wash 1 (access road)	Coconino County, AZ	Perennial stream	Johnson Wash	No	
27	Kanab Creek	White Sage Wash 2 (access road)	Coconino County, AZ	Perennial stream	Johnson Wash	Small dammed pond with water ~3 feet deep	
28	Kanab Creek	White Sage Wash	Coconino County, AZ	Perennial stream	Johnson Wash	No	
29	Kanab Creek	Jacob Canyon on Kaibab Indian Reservation	Coconino County, AZ	Perennial stream	Kanab Creek	No	
30	Kanab Creek	Jacob Canyon South of Kaibab Indian Reservation	Coconino County, AZ	Perennial stream	Kanab Creek	No	
31	Kanab Creek	Jacob Canyon at Kanab Creek	Coconino County, AZ	Perennial stream	Kanab Creek	No	
32	Kanab Creek	Kanab Creek at Jacob Canyon	Mohave County, AZ	Perennial stream	Colorado River	Some ponding in channel, flow not continuous	
33	Kanab Creek	Bitter Seeps Wash	Mohave County, AZ	Perennial stream	Bulrush Wash -> Kanab Creek	No	
34	Kanab Creek	Two Mile Wash at Mt. Trumbull Road	Mohave County, AZ	Perennial stream	Bitter Seeps Wash	No	
35	Kanab Creek	Moonshine Ridge Wash	Mohave County, AZ	Intermittent stream	Pipe Valley Wash -> Bulrush Wash -> Kanab Creek	No	
36	Kanab Creek	Wash west of Moonshine Ridge (Big Sand Wash)	Mohave County, AZ	Perennial stream	Pipe Valley Wash -> Bulrush Wash -> Kanab Creek	No	
37	Fort Pierce Wash	Cane Bed Wash	Mohave County, AZ	Perennial stream	Cottonwood Wash -> Lakes of Short Creek (dry lakes)	No	


		Summary of Fe	Table 3-1 eatures Evaluate	ed in Study Are	a	Page 4 of 4
Map Key	Watershed	Lakes, Rivers, Streams, Washes	Location	USGS Topo mapping	Tributary to	Water Observed in Feature During July 2009 Field Surveys
38	Fort Pierce Wash	Short Creek, Colorado City	Mohave County, AZ	Perennial stream	Fort Pierce Wash -> Virgin River	No
39	Fort Pierce Wash	Short Creek, East Canaan Gap	Washington County, UT	Intermittent stream	Fort Pierce Wash -> Virgin River	No
40	Fort Pierce Wash	Short Creek, West Canaan Gap	Washington County, UT	Intermittent stream	Fort Pierce Wash -> Virgin River	No
41	Fort Pierce Wash	Wash South of Forebay	Washington County, UT	Perennial stream	Fort Pierce Wash -> Virgin River	No
42	Virgin River	Gould Wash	Washington County, UT	Intermittent stream	Virgin River	No
43	Virgin River	Virgin River (aerial crossing)	Washington County, UT	Perennial river	Colorado River	Yes
44	Virgin River	Drainage crossing at Nephi's Twist	Washington County, UT	Perennial stream	La Verkin Creek	No
45	Virgin River	LaVerkin Creek	Washington County, UT	Perennial stream	Virgin River	Yes
46	Virgin River	Ash Creek (aerial crossing)	Washington County, UT	Perennial stream	Virgin River	Yes
47	Virgin River	Tributary to Ash Creek outside Tocquerville	Washington County, UT	Intermittent stream	Ash Creek	No
48	Virgin River	Ash Creek (adjacent to gravel pit)	Washington County, UT	Perennial stream	Virgin River	No
49	Virgin River	Tributary East of Ash Creek	Washington County, UT	Intermittent stream	Ash Creek	No

3.3 Wetlands

Only one feature, Gould Wash, met the three-parameter criteria for wetland determination. Gould Wash is an intermittent stream that drains to the Virgin River. The 0.01-acre wetland occurs within and adjacent to the well-defined drainage channel. Refer to the wetland delineation report (Appendix A) for more detailed information.

3.4 Riparian Areas

Riparian areas in the study area are those areas supporting riparian vegetation; including hydrophytic vegetation as identified in the National List of Plant Species that Occur in Wetlands (Reed 1988). Plant species observed in riparian areas in the study area included saltcedar (*Tamarix ramosissima*), narrowleaf willow (*Salix exigua*), Russian olive (*Elaeagnus angustifolia*), Fremont cottonwood (*Populus fremontii*),

rough cocklebur (*Xanthium strumarium*), and pale spikerush (*Eleocharis macrostachya*). See wetland determination data sheets in Appendix A for more information. The following table summarizes the acreage of riparian areas within the study area.

Table 3-2Riparian Areas Within the Study Area			
Riparian Area Name	Riparian Area Acreage		
West of Blue Pool Wash	1.04		
Paria River	42.23		
Johnson Wash	0.39		
Kanab Creek at Fredonia	1.17		
Cottonwood Creek	2.81		
Two Mile Wash	1.32		
White Sage Wash	0.05		
Kanab Creek at Jacob Canyon	0.46		
Bitter Seeps Wash	0.39		
Two Mile Wash at Mt. Trumbull Road	0.40		
Short Creek, Colorado City	0.41		
Short Creek, East Canaan Gap	1.29		
Short Creek, West Canaan Gap	0.49		
Gould Wash	0.60		
LaVerkin Creek	0.35		
Tributary East of Ash Creek	0.06		
Ash Creek	0.31		

Table 3-3 summarizes Properly Functioning Condition (PFC) ratings and trends for riparian areas evaluated in the study area. PFC data sheets are attached in Appendix B.

· · ·	Table 3-3 unctioning Condition Ratings a an Areas in the Study Area	nd Trends for Page 1 of 2
Riparian Area Name	PFC Functional Rating	Trend
West of Blue Pool Wash	Nonfunctional	Not Apparent
Paria River	Functional - At Risk	Downward
Johnson Wash	Nonfunctional	Downward
Kanab Creek at Fredonia	Functional - At Risk	Downward
Cottonwood Creek	Functional - At Risk	Not Apparent
Two Mile Wash	Nonfunctional	Downward
White Sage Wash	Nonfunctional	Not Apparent
Kanab Creek at Jacob Canyon	Functional - At Risk	Not Apparent
Bitter Seeps Wash	Functional - At Risk	Not Apparent
Two Mile Wash at Mt. Trumbull Road	Nonfunctional	Downward
Short Creek, Colorado City	Nonfunctional	Downward
Short Creek, East Canaan Gap	Nonfunctional	Downward

	Table 3-3 'unctioning Condition Ratings an ian Areas in the Study Area	d Trends for Page 2 of 2
Riparian Area Name	PFC Functional Rating	Trend
Short Creek, West Canaan Gap	Nonfunctional	Downward
Gould Wash	Nonfunctional	Downward
LaVerkin Creek	Properly Functioning Condition	Not Apparent
Tributary East of Ash Creek	Functional - At Risk	Downward
Ash Creek	Nonfunctional	Downward

Table 3-4 summarizes functional assessment ratings for riparian areas in the study area. Functional assessment data sheets are attached in Appendix C.

Table 3-4 Summary of Functional Assessments for Riparian Areas in the Study Area				
Riparian Area Name	Percent Total Functional Points	Functional Units	Red Flag	Wetland Category
West of Blue Pool Wash	36%	2.184	0	III
Paria River	53%	173.143	Х	II
Johnson Wash	17%	0.507		IV
Kanab Creek at Fredonia	45%	4.095		III
Cottonwood Creek	40%	8.711		III
Two Mile Wash	23%	2.376		IV
White Sage Wash	23%	0.09		IV
Kanab Creek at Jacob Canyon	27%	0.966		IV
Bitter Seeps Wash	22%	0.663		IV
Two Mile Wash at Mt. Trumbull Road	15%	0.48		IV
Short Creek, Colorado City	15%	0.492		IV
Short Creek, East Canaan Gap	27%	2.708		IV
Short Creek, West Canaan Gap	21%	0.784		IV
Gould Wash	35%	1.62		III
LaVerkin Creek	73%	1.995	Х	II
Tributary East of Ash Creek	21%	0.096		IV
Ash Creek	35%	0.827		III

Table 3-5 summarizes values for riparian areas in the study area.

	Summary of Va	alue	s for		ble (pari		Area	s in	the	Stu	dy A	rea						
	Riparian Area Name	West of Blue Pool Wash	Paria River	Johnson Wash	Kanab Creek at Fredonia	Cottonwood Creek	Two Mile Wash	White Sage Wash	Kanab Creek at Jacob Canyon	Bitter Seeps Wash	Two-Mile Wash at Mt. Trumbull Road	Short Creek, Colorado City	Short Creek, East Canaan Gap	Short Creek, West Canaan Gap	Gould Wash	LaVerkin Creek	Tributary East of Ash Creek	Ash Creek
ality	Is the wetland in public ownership (city, county, state or federal)?	+	+					+	+	+		+		+	+	+	+	+
Visual Quality	Has wetland experienced moderate to low level of disturbance?		+					+	+	+						+		
Visı	Is there an absence of human structures or other human induced disturbances?							+	+									
	Is the wetland in public ownership (city, county, state or federal)?	+	+					+	+	+		+		+	+	+	+	+
y	Is the wetland presently used for recreation/education?											+						
Qualit	Is the wetland ¼ mile or less from and elementary school?																	
tional	Is the wetland five miles or less from a high school?				+											+		
Educa	Is there vehicular, trail, boat or canoe access to the site?	+	+	+		+	+				+	+			+	+	+	+
tional	Has the wetland experienced a moderate to low level of disturbance?		+				+		+	+						+		
Recreational/Educational Quality	Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?	+	+	+		+	+				+	+			+		+	+
	Total:	4	4	6	2	1	2	3	4	5	4	2	5	0	2	4	6	4

3.5 Stream Scour and Sediment Deposition

Streams and washes monitored for scour and sediment deposition associated with peak runoff events yielded data on the depth of scour, depth of sediment deposition following a peak runoff event, and channel bed aggradation and degradation. Scour chains and crest gages were installed in July 2009 and monitored in October 2009, April 2010 and December 2010. The following subsections summarize the scour chain and crest gage data obtained from the streams and washes selected for monitoring.

3.5.1 Ash Creek

The Ash Creek scour chain and crest gage site was selected based on the approximate location of the Cedar Valley pipeline crossing. No runoff flow was evident during three monitoring trips to this site. The peak runoff flow at the Ash Creek site throughout the monitoring period was estimated at 240 cfs. The crest gage was completely inundated, with a measured high water level 3.5 feet above the bottom end cap, on April 21, 2010. No scour occurred during this peak flow event; the channel bed substrate consisted of large cobble and well-graded gravel and sand packed in tight matrix. The scour chain had 1.5 inches of sediment deposited over the top of the vertical chain, indicating a net aggradation of 1.5 inches during the monitoring period.

3.5.2 South Forebay Wash

The South Forebay Wash scour chain and crest gage site was selected based on the approximate location of the LPP crossing. No runoff flow was evident during six monitoring trips to this site. The peak runoff flow in the South Forebay Wash throughout the monitoring period was estimated at 40 cfs. The crest gage recorded 11 inches of water, and there was 2.5 inches of sediment deposited over the bottom cap and inside the gage. The scour chain was lost at this site. The channel bed substrate consisted of small gravel and well-graded sand in a loose matrix. Channel bed aggradation at this site was estimated between 1.0 and 2.5 inches, based on the sediment deposited in the crest gage.

3.5.3 Bitter Seeps Wash

The Bitter Seeps Wash scour chain and crest gage site was selected based on the approximate location of the LPP South Alternative crossing. No runoff flow was evident during five monitoring trips to this site. The peak runoff flow at the Bitter Seeps Wash crossing site throughout the monitoring period was estimated at 145 cfs. The crest gage recorded 19 inches of water, matching debris lines on the banks. The scour chain indicated 9.6 inches of scour at the crossing site. The channel bed substrate consisted of fine sand. The scour chain had 9.6 inches of sand deposited over the chain, indicating no net aggradation or degradation of the channel occurred during the monitoring period.

3.5.4 Jacob Canyon at Kanab Creek

The Jacob Canyon scour chain and crest gage site was selected based on the approximate location of the LPP South Alternative crossing. No runoff flow was evident during five monitoring trips to this site. The peak runoff flow at the Jacob Canyon crossing site throughout the monitoring period was estimated at 85 cfs. The crest gage recorded 8.5 inches of water, matching debris lines on the banks. The scour chain indicated no scour at the crossing site. The channel bed substrate consisted of medium cobble, gravel, coarse sand, and fine sand, in a well graded, tight matrix. The scour chain had 0.75 inch of silty clay deposited over the chain, indicating a net aggradation of the channel occurred during the monitoring period.

3.5.5 Kanab Creek in Kanab Creek Canyon

The Kanab Creek Canyon scour chain and crest gage site was located in a straight reach of Kanab Creek approximately 500 feet downstream of the LPP South Alternative crossing. The LPP South Alternative crossing site is characterized by dense tamarisk. Runoff flow was encountered during two of six monitoring trips to this site. The peak runoff flow in Kanab Creek Canyon throughout the monitoring period was estimated at 450 cfs. The crest gage was completely inundated, with a measured high water

level 3.9 feet above the bottom end cap, matching debris lines on the banks. The scour chain indicated no scour at the monitoring site. The channel bed substrate consisted of coarse to fine gravel, coarse sand, and fine sand and silt, in a well graded matrix. The crest gage had 3 inches of fine sediment deposited inside and surrounding the end cap, indicating a net aggradation of the channel occurred during the monitoring period.

3.5.6 Two-Mile Wash

The Two-Mile Wash scour chain site on the Kaibab-Paiute Indian Reservation was selected based on the approximate location of the LPP Existing Highway Alternative crossing. Runoff flow was encountered during the second of two monitoring trips to this site. The peak runoff flow in Two-Mile Wash throughout the monitoring period was estimated at 0.2 cfs, based on debris flow lines along the channel banks. The scour chain indicated no scour at the crossing site throughout the monitoring period. The channel bed substrate consisted of sandy, clayey soil with moderately high cohesion. There was no indication that either aggradation or degradation of the channel occurred during the monitoring period.

3.5.7 Cottonwood Wash

The Cottonwood Wash scour chain site on the Kaibab-Paiute Indian Reservation was selected based on the approximate location of the LPP Existing Highway Alternative crossing. No runoff flow was encountered during either of the two monitoring trips to this site. The peak runoff flow in Cottonwood Wash throughout the monitoring period was estimated at 0 cfs, based on lack of debris flow lines along the channel banks. The scour chain indicated no scour at the crossing site throughout the monitoring period. The channel bed substrate consisted of sandy, clayey and silty soil with moderately high cohesion. There was no indication that either aggradation or degradation of the channel occurred during the monitoring period.

3.5.8 Johnson Wash

The Johnson Wash scour chain and crest gage site was selected based on the approximate location of either the LPP or Kane County pipeline crossing. Runoff flow was encountered during the last of five monitoring trips to this site. The peak runoff flow in Johnson Wash throughout the monitoring period was estimated at 3 cfs. The crest gage was damaged by livestock during the monitoring period and no flow stages were recorded. The scour chain indicated no scour at the crossing site throughout the monitoring period. The channel bed substrate consisted of clayey soil with high cohesion. There was no indication of either aggradation or degradation of the channel occurred during the monitoring period.

3.5.9 Sand Gulch Near Confluence with Paria River

The Sand Gulch scour chain site was selected based on the approximate location of the LPP crossing. No runoff flow was encountered during four monitoring trips to this site. The peak runoff flow in Sand Gulch throughout the monitoring period was estimated at 90 cfs. Debris lines on the channel banks indicated a maximum flow depth of 1 foot. The scour chain indicated scour and/or deposition occurred repeatedly at the crossing site throughout the monitoring period. After the first monitoring period, there was no scour and deposition of 0.125 inches of silt. After the second monitoring period, the scour depth was 2.4 inches and 2.5 inches of sand was deposited over the scour chain. After the third monitoring period, the scour depth was 2.4 inches and 4 inches of sand was deposited over the chain. The channel bed substrate consisted of uniform sand. The scour chain data indicated net aggradation of the channel occurred during the monitoring period.

3.5.10 Paria River at U.S. Highway 89

The Paria River scour chain and crest gage site was selected based on the approximate location of the LPP crossing. Stream flow was encountered during all four monitoring trips to this site. The peak runoff flow in the Paria River throughout the monitoring period was estimated at greater than 450 cfs, based on USGS gage records at the U.S. Highway 89 bridge. The scour chain indicated scour and/or deposition occurred repeatedly at the crossing site throughout the monitoring period. After the first monitoring period, the scour depth was 2.4 inches and deposition of 1.0 inch of sand (net degradation of 1.4 inches), and the crest gage indicated 5.4 inches of flow depth. After the second monitoring period, the scour depth was 1.2 inches and 1 inch of sand was deposited over the scour chain (net degradation of 0.2 inch), and the crest gage indicated 5.5 inches of flow depth. During the third monitoring period and highest estimated river flow, the scour chain was lost along with the crest gage. The depth of scour was at least 38 inches and estimated to be at least 6 feet deep, based on remnant pools in the east portion of the floodplain. The river channel and floodplain had been scoured to 340 feet wide and the active channel shifted from the east side to the west side. The channel bed substrate consisted of well-graded fine gravel and coarse to fine sand throughout the monitoring period.

3.5.11 Wash West of Blue Pool Wash

The Wash West of Blue Pool Wash scour chain and crest gage site was selected based on the approximate location of the LPP crossing. No runoff flow was encountered during any of the monitoring trips to this site. A peak flow event occurred prior to the final monitoring site visit, with the highest stage at 22 inches deep recorded in the crest gage, matching debris lines on the banks. The scour chain was lost during the final monitoring period; however, a new 1.5-foot deep channel was formed west of the monitored channel. This indicated that scour depth was between 1.5 feet and 2 feet deep because the crest gage remained vertical. The channel bed substrate consisted of mostly fine sand with clay and silt as a minor fraction. The flow velocity is low at this site and it is occasionally inundated because the flow outlet invert elevation through the U.S. Highway 89 embankment is approximately 4.5 feet above the channel invert elevation (i.e., the highway embankment can act as a small dam).

3.5.12 Second Wash West of Greenhaven

The Second Wash West of Greenhaven scour chain and crest gage site was selected based on the approximate location of the LPP crossing. No runoff flow was encountered during any of the monitoring trips to this site. A peak flow event occurred prior to the final monitoring site visit, with the highest stage at 11.75 feet above the bottom of the crest gage, estimated from debris lines on the surrounding banks and above the 7-foot diameter culvert pipe under U.S. Highway 89. The crest gage was tipped over but not covered by the fine sand comprising the channel bed at this monitoring site. This indicates that the scour depth did not exceed 2.5 feet. The scour chain was eroded away by the extreme runoff flow; however, the soil anchor was recovered at the same depth it had been installed. All previous measurements of the scour chain indicated no scour had occurred. The highway culvert invert was covered with 1.5 inches of deposited sand following the final monitoring site visit. Based on these observations, a slight aggradation of the channel occurred during the peak runoff event.

3.5.13 First Wash West of Greenhaven

The First Wash West of Greenhaven scour chain and crest gage site was selected based on the approximate location of the LPP crossing. No runoff flow was encountered during any of the monitoring trips to this site; however, the site had standing water during the final monitoring site visit. A peak flow event occurred prior to the final monitoring site visit, with the highest stage at 4.25 feet above the bottom

of the crest gage. The scour chain did not indicate scour during any of the four monitoring trips to this site. The channel bed substrate consisted of mostly fine sand with clay and silt as a minor fraction. The flow velocity is low at this site and it is occasionally inundated because the flow outlet invert elevation through the U.S. Highway 89 embankment is approximately 4.5 feet above the channel invert elevation (i.e., the highway embankment can act as a small dam).

3.6 Jurisdictional Waters

The area of waters indicated to be jurisdictional was estimated from digital photography and field data collected based on the potential location of ordinary high water mark.

S	Summary of Jurisd	Table 3-6 ictional Waters i	in the Study Area Page 1 of 2
Jurisdictional Water Name	Location	Area of Jurisdictional Waters within Study Area (acres)	Applicable Jurisdictional Criteria
Lake Powell Intake	Coconino County, AZ	0.002	Navigable waterway
Wash 1 West of Greenhaven	Kane County, UT	0.77	Intermittent drainage within several miles of navigable waterway (<2 mile from Lake Powell)
Wash 2 West of Greenhaven	Kane County, UT	0.56	Intermittent drainage within several miles of navigable waterway (<2 mile from Lake Powell)
Blue Pool Wash	Kane County, UT	1.04	Intermittent drainage within several miles of navigable waterway (<1 mile from Lake Powell)
West of Blue Pool Wash	Kane County, UT	1.04	Intermittent drainage within several miles of navigable waterway(<1 mile from Lake Powell)
Wash 2 West of Blue Pool Wash (2nd Wash East of Big Water)	Kane County, UT	0.35	Intermittent drainage within several miles of navigable waterway (<2 mile from Lake Powell)
Paria River	Kane County, UT	3.29	Perennial river
Johnson Wash	Kane County, UT	0.23	Intermittent stream with continuous seasonal flow
Kanab Creek at Fredonia	Mohave County, AZ	0.16	Intermittent stream with continuous seasonal flow
Cottonwood Creek	Mohave County, AZ	0.18	Intermittent stream with continuous seasonal flow
Two Mile Wash	Mohave County, AZ	0.09	Intermittent stream with continuous seasonal flow
White Sage Wash	Coconino County, AZ	0.24	Intermittent stream with continuous seasonal flow
Kanab Creek at Jacob Canyon	Mohave County, AZ	0.36	Intermittent stream with continuous seasonal flow
Bitter Seeps Wash	Mohave County, AZ	0.15	Intermittent stream with continuous seasonal flow
Two Mile Wash at Mt. Trumbull Road	Mohave County, AZ	0.07	Intermittent stream with continuous seasonal flow
Short Creek, Colorado City	Mohave County, AZ	0.43	Intermittent stream with continuous seasonal flow
Short Creek, East Canaan Gap	Washington County, UT	0.38	Intermittent stream with continuous seasonal flow
Short Creek, West Canaan Gap	Washington County, UT	0.21	Intermittent stream with continuous seasonal flow
Gould Wash	Washington County, UT	0.31	Intermittent/ephemeral drainage more than several miles from navigable waterway with adjacent wetland performing ecological functions
Virgin River (aerial crossing)	Washington County, UT	N/A (aerial crossing, no direct impact)	Perennial stream
LaVerkin Creek	Washington County, UT	0.77	Perennial stream

S	Summary of Jurisd	Table 3-6 ictional Waters i	n the Study Area Page 2 of 2
Jurisdictional Water Name	Location	Area of Jurisdictional Waters within Study Area (acres)	Applicable Jurisdictional Criteria
Ash Creek (aerial crossing)	Washington County, UT	N/A (aerial crossing, no direct impact)	Intermittent stream with continuous seasonal flow
Ash Creek (adjacent to gravel pit)	Washington County, UT	1.75	Intermittent stream with continuous seasonal flow

3.7 Permitting Requirements

Permits would be required for pipeline crossings of jurisdictional waters, including the wetland at Gould Wash. Table 3-7 summarizes the anticipated permits required to cross study area jurisdictional waters.

Table 3-7 Summary of Permits Required for Crossing Jurisdictional Waters				
Jurisdictional Water Name	Location	Permit		
Lake Powell Intake	Coconino County, AZ	NWP 18		
Wash 1 West of Greenhaven	Kane County, UT	GP 40 or NWP 12		
Wash 2 West of Greenhaven	Kane County, UT	GP 40 or NWP 12		
Blue Pool Wash	Kane County, UT	GP 40 or NWP 12		
West of Blue Pool Wash	Kane County, UT	GP 40 or NWP 12		
Wash 2 West of Blue Pool Wash (2nd Wash East of Big Water)	Kane County, UT	GP 40 or NWP 12		
Paria River	Kane County, UT	GP 40 or NWP 12		
Johnson Wash	Kane County, UT	GP 40 or NWP 12		
Kanab Creek at Fredonia	Mohave County, AZ	NWP 12		
Cottonwood Creek	Mohave County, AZ	NWP 12		
Two Mile Wash	Mohave County, AZ	NWP 12		
White Sage Wash	Coconino County, AZ	NWP 12		
Kanab Creek at Jacob Canyon	Mohave County, AZ	NWP 12		
Bitter Seeps Wash	Mohave County, AZ	NWP 12		
Two Mile Wash at Mt. Trumbull Road	Mohave County, AZ	NWP 12		
Short Creek, Colorado City	Mohave County, AZ	NWP 12		
Short Creek, East Canaan Gap	Washington County, UT	GP 40 or NWP 12		
Short Creek, West Canaan Gap	Washington County, UT	GP 40 or NWP 12		
Gould Wash	Washington County, UT	NWP 12		
LaVerkin Creek	Washington County, UT	GP 40 or NWP 12		
Ash Creek (adjacent to gravel pit)	Washington County, UT	GP 40 or NWP 12		

Chapter 4 Environmental Consequences (Impacts)

4.1 Significance Criteria

Impacts on wetlands, riparian areas, and jurisdictional waters are considered significant if construction, operation or maintenance activities would result in any of the following conditions:

- A net loss of wetland area, riparian areas, or jurisdictional waters resulting from construction or operational activities
- Changes in the quality or quantity of hydrologic support (either through surface flow or groundwater levels) that would result in an overall loss or gain of in the area of wetlands, riparian areas, or jurisdictional waters
- Other indirect impacts on wetlands, riparian areas, or jurisdictional water resulting from Project construction or operational activities
- Loss of wetland functions or values from changes in water supply affecting wetland plant communities, wetland soils, or hydrology

4.2 Potential Impacts Eliminated From Further Analysis

Riparian areas along the Virgin River would not be directly or indirectly affected by the Lake Powell Pipeline construction or operation. LPP construction activities would terminate at Sand Hollow Reservoir more than three miles east of the Virgin River. LPP project operation would supply raw water to Sand Hollow Reservoir for treatment in the Quail Creek Water Treatment Plant before distribution throughout the Washington County Water Conservancy District (WCWCD) service area. Following use in homes, businesses and institutions, the wastewater would be treated in wastewater treatment facilities and then further treated in the wastewater reclamation facility for reuse as secondary irrigation water. This water would be stored in existing and approved reservoirs in the St. George metropolitan area and used for outdoor watering. The Utah Division of Water Resources (UDWR) has modeled the Virgin River using the Virgin River Daily Simulation Model (VRDSM) for scenarios involving no LPP water and with LPP water to determine the potential for return flows to the Virgin River that could potentially affect riparian areas. The VRDSM results indicate that LPP return flows to the Virgin River would be within the measurement accuracy of the USGS gages on the Virgin River and changes in river flows would not be measurable. Therefore, potential impacts on riparian areas and wetlands along the Virgin River are eliminated from further analysis. A detailed analysis of the VRDSM model results is included in the draft Surface Water Resources Study Report (UBWR 2011).

4.3 South Alternative

4.3.1 Construction

4.3.1.1 Wetlands

One wetland area was identified in the South Alternative study area at Gould Wash, with an area of 0.01 acre (see attached Wetland Delineation Report in Appendix A for more information). This wetland would not be directly impacted by construction activities; however, indirect effects relating to sedimentation and water quality could occur.

4.3.1.2 Riparian Areas

Table 4-1 summarizes the riparian areas within the South Alternative study area. A total of 47.48 acres were mapped within the South Alternative study area. Most riparian areas were determined to be Nonfunctional, with one area, LaVerkin Creek identified as being in Properly Functioning Condition. Functional assessment points ranged from 15 percent to 73 percent. The highest ratings occurred in LaVerkin Creek and the Paria River, which are documented to contain federally listed fish species in reaches downstream from the pipeline crossings. See attached data sheets in Appendices B and C for more information.

Table 4-1Riparian Areas in the South Alternative Study Area1					
Riparian Area Name	Riparian Area Acreage PFC Rating/Trend		Functional Assessment Points/Category		
West of Blue Pool Wash	1.04	Nonfunctional/Not Apparent	36%/III		
Paria River	42.23	Functional - At Risk/Downward	53%/II		
White Sage Wash	0.05	Nonfunctional/Not Apparent	23%/IV		
Kanab Creek at Jacob Canyon	0.46	Functional - At Risk/Not Apparent	27%/IV		
Bitter Seeps Wash	0.39	Functional - At Risk/Not Apparent	22%/IV		
Two Mile Wash at Mt. Trumbull Road	0.40	Nonfunctional/Downward	15%/IV		
Short Creek, Colorado City	0.41	Nonfunctional/Downward	15%/IV		
Short Creek, East Canaan Gap	1.29	Nonfunctional/Downward	27%/IV		
Short Creek, West Canaan Gap	0.49	Nonfunctional/Downward	21%/IV		
Gould Wash ¹	0.60	Nonfunctional/Downward	35%/III		
LaVerkin Creek ¹	0.35	Properly Functioning Condition/Not Apparent	73%/II		
Tributary East of Ash Creek ¹	0.06	Functional - At Risk/Downward	21%/IV		
Ash Creek ¹	0.31	Nonfunctional/Downward	35%/III		
Total:	48.08				

Impacts on riparian areas include direct and indirect effects and would be temporary, with no permanent loss of function or values occurring. Temporary effects may include loss of vegetation, soil disturbance, disturbance of hydrological processes, sedimentation, and impacts on water quality. These would be minimized by the implementation of construction best management practices (BMPs) (see Chapter 5).

4.3.1.3 Jurisdictional Waters

Table 4-2 lists the water bodies expected to be considered jurisdictional that occur within the South Alternative study area. A total of 11.41 acres of jurisdictional waters were mapped within the South Alternative study area.

Table 4-2 Summary of Jurisdictional South Alternative Stu	
Jurisdictional Water Name	Area of Jurisdictional Waters within Study Area (acres)
Lake Powell Intake	0.002
Wash 1 West of Greenhaven	0.77
Wash 2 West of Greenhaven	0.56
Blue Pool Wash	1.04
West of Blue Pool Wash	1.04
Wash 2 West of Blue Pool Wash (2nd Wash East of Big Water)	0.35
Paria River	3.29
White Sage Wash	0.24
Kanab Creek at Jacob Canyon	0.36
Bitter Seeps Wash	0.15
Two Mile Wash at Mt. Trumbull Road	0.07
Short Creek, Colorado City	0.43
Short Creek, East Canaan Gap	0.38
Short Creek, West Canaan Gap	0.21
Gould Wash	0.31
Virgin River (aerial crossing) ¹	N/A (aerial crossing, no direct impact)
LaVerkin Creek ¹	0.77
Ash Creek (aerial crossing) ¹	N/A (aerial crossing, no direct impact)
Ash Creek (adjacent to gravel pit) ¹	1.75
Total:	11.72
Note: ¹ Riparian areas indicated in this table include Cec	dar Valley Pipeline crossings.

Impacts on jurisdictional waters would be temporary, with no permanent loss of function or values occurring. Temporary effects would not impact areas of open water, except where pipeline crossings occur through perennial streams (i.e. the Paria River, and LaVerkin Creek). Impacts may include temporary loss of vegetation, soil disturbance, disturbance of hydrological processes, sedimentation, and impacts on water quality. These would be minimized by the implementation of construction best management practices (BMPs) (see Chapter 5).

4.3.1.4 Permitting Requirements

Table 4-3 identifies the expected permitting requirements for wetland and riparian areas within the South Alternative study area.

Water Body Name	Location	Permit
Lake Powell Intake	Coconino County, AZ	NWP 18
Wash 1 West of Greenhaven	Kane County, UT	GP 40 or NWP 12
Wash 2 West of Greenhaven	Kane County, UT	GP 40 or NWP 12
Blue Pool Wash	Kane County, UT	GP 40 or NWP 12
West of Blue Pool Wash	Kane County, UT	GP 40 or NWP 12
Wash 2 West of Blue Pool Wash (2nd Wash East of Big Water)	Kane County, UT	GP 40 or NWP 12
Paria River	Kane County, UT	GP 40 or NWP 12
White Sage Wash	Coconino County, AZ	NWP 12
Kanab Creek at Jacob Canyon	Mohave County, AZ	NWP 12
Bitter Seeps Wash	Mohave County, AZ	NWP 12
Two-Mile Wash at Mt. Trumbull Road	Mohave County, AZ	NWP 12
Short Creek, Colorado City	Mohave County, AZ	NWP 12
Short Creek, East Canaan Gap	Washington County, UT	GP 40 or NWP 12
Short Creek, West Canaan Gap	Washington County, UT	GP 40 or NWP 12
Gould Wash	Washington County, UT	NWP 12
LaVerkin Creek ¹	Washington County, UT	GP 40 or NWP 12
Ash Creek (adjacent to gravel pit) ¹	Washington County, UT	GP 40 or NWP 12

4.3.2 Operation and Maintenance

Operation and maintenance activities are not expected to have measurable impacts on wetlands, riparian areas, or jurisdictional waters. Occasional water releases from blowoff valves at low points along the pipeline would occur in some years during January when storm runoff is more common and riparian vegetation is dormant. The short-term water releases from blowoff valves would be controlled and not cause erosion or downstream sedimentation.

4.4 Existing Highway Pipeline Alternative

4.4.1 Construction

4.4.1.1 Wetlands

One wetland area was identified in the Existing Highway Alternative study area at Gould Wash, with an area of 0.01 acre (see attached Wetland Delineation Report in Appendix A for more information). This wetland would not be directly impacted by construction activities; however, indirect effects relating to sedimentation and water quality could occur.

4.4.1.2 Riparian Areas

Table 4-4 summarizes the riparian areas within the Existing Highway Alternative study area. A total of 51.87 acres were mapped within the Existing Highway Alternative study area. Most riparian areas were determined to be Nonfunctional, with one area, LaVerkin Creek identified as being in Properly Functioning Condition. Functional assessment points ranged from 15 percent to 73 percent. The highest ratings occurred in LaVerkin Creek and the Paria River, which are documented to contain federally listed fish species in reaches downstream from the pipeline crossings. See attached data sheets in Appendices B and C for more information.

Table 4-4 Riparian Areas in the Existing Highway Alternative Study Area ¹					
Riparian AreaRiparian AreaPFC Rating/TrendAcreageAcreageAcreage		Functional Assessment Points/Category			
West of Blue Pool Wash	1.04	Nonfunctional/Not Apparent	36%/III		
Paria River	42.23	Functional - At Risk/Downward	53%/II		
Johnson Wash	0.39	Nonfunctional/Downward	17%/IV		
Kanab Creek at Fredonia	1.17	Functional - At Risk/Downward	45%/III		
Cottonwood Creek	2.81	Functional - At Risk/Not Apparent	40%/III		
Two-Mile Wash	1.32	Nonfunctional/Downward	23%/IV		
Short Creek, Colorado City	0.41	Nonfunctional/Downward	15%/IV		
Short Creek, East Canaan Gap	1.29	Nonfunctional/Downward	27%/IV		
Short Creek, West Canaan Gap	0.49	Nonfunctional/Downward	21%/IV		
Gould Wash ¹	0.60	Nonfunctional/Downward	35%/III		
LaVerkin Creek ¹	0.35	Properly Functioning Condition/Not Apparent	73%/II		
Tributary East of Ash Creek ¹	0.06	Functional - At Risk/Downward	21%/IV		
Ash Creek ¹	0.31	Nonfunctional/Downward	35%/III		
Total: 52.47					

Impacts on riparian areas include direct and indirect effects and would be temporary, with no permanent loss of function or values occurring. Temporary effects may include loss of vegetation, soil disturbance, disturbance of hydrological processes, sedimentation, and impacts on water quality. These would be minimized by the implementation of construction BMPs (see Chapter 5).

4.4.1.3 Jurisdictional Waters

Table 4-5 lists the water bodies expected to be considered jurisdictional that occur within the Existing Highway Alternative study area. A total of 11.25 acres of jurisdictional waters were mapped within the Existing Highway Alternative study area.

Table 4-5Summary of Jurisdictional Waters in theExisting Highway Alternative Study Area1			
Jurisdictional Water Name	Area of Jurisdictional Waters within Study Area (acres)		
Lake Powell Intake	0.002		
Wash 1 West of Greenhaven	0.77		
Wash 2 West of Greenhaven	0.56		
Blue Pool Wash	1.04		
West of Blue Pool Wash	1.04		
Wash 2 West of Blue Pool Wash (2nd Wash East of Big Water)	0.35		
Paria River	3.29		
Johnson Wash	0.23		
Kanab Creek at Fredonia	0.16		
Cottonwood Creek	0.18		
Two-Mile Wash	0.09		
Short Creek, Colorado City	0.43		
Short Creek, East Canaan Gap	0.38		
Short Creek, West Canaan Gap	0.21		
Gould Wash ¹	0.31		
Virgin River (aerial crossing) ¹	N/A (aerial crossing, no direct impact)		
LaVerkin Creek ¹	0.77		
Ash Creek (aerial crossing) ¹	N/A (aerial crossing, no direct impact)		
Ash Creek (adjacent to gravel pit) ¹	1.75		
Total:	11.56		

Impacts on jurisdictional waters would be temporary, with no permanent loss of function or values occurring. Temporary effects would not impact areas of open water, except where pipeline crossings occur through perennial streams (i.e. the Paria River, and LaVerkin Creek). Impacts may include loss of vegetation, soil disturbance, disturbance of hydrological processes, sedimentation, and impacts on water quality. These would be minimized by the implementation of construction best management practices (BMPs) (see Chapter 5).

4.4.1.4 Permitting Requirements

Table 4-6 identifies the expected permitting requirements for wetland and riparian areas within the Existing Highway Alternative study area.

Water Body Name	Location	Permit
Lake Powell Intake	Coconino County, AZ	NWP 18
Wash 1 West of Greenhaven	Kane County, UT	GP 40 or NWP 12
Wash 2 West of Greenhaven	Kane County, UT	GP 40 or NWP 12
Blue Pool Wash	Kane County, UT	GP 40 or NWP 12
West of Blue Pool Wash	Kane County, UT	GP 40 or NWP 12
Wash 2 West of Blue Pool Wash (2nd Wash East of Big Water)	Kane County, UT	GP 40 or NWP 12
Paria River	Kane County, UT	GP 40 or NWP 12
Johnson Wash	Kane County, UT	GP 40 or NWP 12
Kanab Creek at Fredonia	Mohave County, AZ	NWP 12
Cottonwood Creek	Mohave County, AZ	NWP 12
Two-Mile Wash	Mohave County, AZ	NWP 12
Short Creek, Colorado City	Mohave County, AZ	NWP 12
Short Creek, East Canaan Gap	Washington County, UT	GP 40 or NWP 12
Short Creek, West Canaan Gap	Washington County, UT	GP 40 or NWP 12
Gould Wash ¹	Washington County, UT	NWP 12
La Verkin Creek ¹	Washington County, UT	GP 40 or NWP 12
Ash Creek (adjacent to gravel pit) ¹	Washington County, UT	GP 40 or NWP 12

 Table 4-6

 Summary of Expected Permits Required in the Existing Highway Alternative Study Area¹

4.4.2 Operation and Maintenance

The impacts would be the same as described in Section 4.3.2.

4.5 Southeast Corner Pipeline Alternative

Wetland and riparian resource impacts for the Southeast Corner Alternative would be the same as described for the South Alternative in Section 4.3.

4.6 Transmission Line Alternatives

4.6.1 Construction

4.6.1.1 Wetlands

One wetland area was identified in the Transmission Line Alternatives study area at Gould Wash, with an area of 0.01 acre (see attached Wetland Delineation Report in Appendix A for more information). This wetland would not be directly impacted by construction activities; however, indirect effects relating to sedimentation and water quality could occur. These potential impacts would be minimized by the implementing construction BMPs (see Chapter 5).

4.6.1.2 Riparian Areas

Table 4-7 summarizes the riparian areas within the Transmission Line Alternatives study area. A total of 42.83 acres were mapped within the two riparian areas identified in the Transmission Line Alternatives study area. One area, Gould Wash, was determined to be Nonfunctional; the Paria River was rated as Function – At Risk. Gould Wash has a functional assessment rating of 35 percent, while downstream reaches of the Paria River, which are documented to contain federally listed fish species, had a functional assessment rating of 53 percent. See attached data sheets in Appendices B and C for more information.

Table 4-7 Riparian Areas in the Transmission Line Alternatives Study Area				
Name	Riparian Area Acreage PFC Rating/Trend		Functional Assessment Points/Category	
Paria River	42.23	Functional - At Risk/Downward	53%/II	
Gould Wash	0.60	Nonfunctional/Downward	35%/III	
Total:	42.83			

Impacts on riparian areas include direct and indirect effects and are expected to be temporary, with no permanent loss of function or values occurring. Temporary effects may include loss of vegetation, soil disturbance, disturbance of hydrological processes, sedimentation, and impacts on water quality. These would be minimized by the implementing construction BMPs (see Chapter 5).

4.6.1.3 Jurisdictional Waters

Table 4-8 lists the water bodies expected to be considered jurisdictional that occur within the Transmission Line Alternatives study area. A total of 3.60 acres of jurisdictional waters were mapped within the Transmission Line Alternatives study area. Potential impacts on jurisdictional waters would be temporary, with no permanent loss of function or values occurring. Temporary effects could occur within floodplains of perennial streams (i.e. the Paria River) from construction access to transmission line towers Impacts may include loss of vegetation, soil disturbance, disturbance of hydrological processes, sedimentation, and impacts on water quality. These potential impacts would be minimized by the implementing construction best management practices (BMPs) (see Chapter 5).

Table 4-8Summary of Jurisdictional Waters in theTransmission Line Alternatives Study Area			
Jurisdictional Water	Jurisdictional Water Area Within the Study Area (acres)		
Paria River	3.29		
Gould Wash 0.31			
Total: 3.60			

4.6.1.4 Permitting Requirements

Table 4-9 identifies the expected permitting requirements for wetland and riparian areas within the Transmission Line Alternatives study area.

Table 4-9 Summary of Expected Permits Required in the Transmission Line Alternatives Study Area					
Water Body Name Location Permit					
Paria River	Kane County, UT	GP 40 or NWP 12			
Gould Wash	Washington County, UT	NWP 12			

4.6.2 Operation and Maintenance

O&M activities are not expected to have measurable impacts on wetlands, riparian areas, or jurisdictional waters.

4.7 No Lake Powell Water Alternative

Under the No Lake Powell Water Alternative, no construction would occur, and there would be no direct impacts on wetlands, riparian areas, and jurisdictional waters. The No Lake Powell Water Alternative could have significant indirect impacts on riparian areas along the Virgin River and its tributary streams, and Cedar Valley streams under the influence of groundwater recharge from water supplies used for outdoor residential landscape watering. Restrictions on outdoor watering of residential landscapes would nearly eliminate all recharge to surface and subsurface soils and shallow aquifers in the St. George metropolitan area and Cedar Valley. Reaches of area streams tributary to the Virgin River and some reaches of the Virgin River could become losing reaches. Riparian vegetation may not grow along these losing reaches or riparian vegetation communities could diminish as outdoor residential watering is restricted. Loss or decrease of riparian vegetation would result in increased stream water temperatures because shade over these streams would decrease, which could adversely affect aquatic resources. These indirect impacts would be permanent.

4.8 No Action Alternative

Under the No Action Alternative, no construction would occur, and there would be no direct or indirect impacts on wetlands, riparian areas, and jurisdictional waters.

Chapter 5 Mitigation and Monitoring

Mitigation measures can be implemented to avoid, minimize or reduce project impacts on wetlands and riparian areas. Mitigation measures incorporate the use of best management practices (BMPs) including standard construction practices and standard operating procedures for grading and erosion control, riparian revegetation and monitoring, hazardous materials management, and stormwater pollution prevention.

The following BMPs and standard construction procedures would be used during construction to avoid, minimize, or reduce impacts on wetlands and riparian areas.

- Riparian vegetation clearing of pipeline crossings would be minimized.
- Riparian shrubs that must be removed for pipeline crossings of stream channels would be salvaged as possible, stockpiled and watered during construction, and replanted along the restored stream banks during construction site restoration.
- Construction of pipeline crossings of dry washes would be performed when the washes are dry.
- Construction of pipeline crossings of perennial or intermittent flowing streams (e.g., Paria River and LaVerkin Creek) would be performed when the streams are either at low flows or are dry.
- Silt fences and/or straw bales would be temporarily installed upstream or up-gradient of wetlands to filter suspended sediments and bedload sediments to avoid sedimentation impacts during construction. If necessary, silt fences and/or straw bales would be installed in series to control sediments and turbidity generated by construction activities.
- Water bladder dams or similar structures would be used as necessary to form temporary coffer dams upstream of pipeline crossings for diversion of Paria River and LaVerkin Creek flows during construction. Culvert pipes would be installed at the existing slope of the streams to divert flow around the pipeline crossing work area. Stream flows would be diverted through the culvert pipes to control turbidity during construction of the pipeline crossings.
- Equipment usage and operation within temporarily dewatered reaches of stream channels would be minimized to protect stream bed substrates.
- Construction equipment working within the temporarily dewatered reaches of stream channels would be checked and regularly monitored for leaking hydraulic fluid, oil, grease, and fuel.
- All construction equipment refueling would be performed on upland areas to prevent fuel spills from contaminating stream substrates and the dewatered stream reaches.
- Construction trenches within dewatered stream reaches would be pumped as necessary to remove subsurface water. The water would be pumped into portable tanks for settling, and then land applied away from the streams for disposal.
- Silt fences would be installed across the stream channels within the dewatered construction areas downstream of the pipeline crossing excavation to capture sediments that may be mobilized by

precipitation events during construction activities. The silt fence toe would be anchored into the stream bed with native material. The silt fence would be removed following completion of the pipeline crossing construction and native material used to anchor the silt fence toe would be returned to pre-construction conditions.

- Streambed substrates at the surface of dewatered stream beds would be removed, stockpiled and replaced on the stream bed as part of the construction site restoration. All disturbed area within the dewatered stream beds would be restored with natural sand, gravel, cobble, and/or boulder material to the same conditions as before construction.
- Soil, sand, gravel, and rock materials excavated from dewatered stream channels would be hauled out of the dewatered stream channel and disposed in an approved upland disposal site (e.g., gravel pit, rock quarry, or other approved disposal area). Clean sand and gravel would be placed and compacted in pipeline trenches around and over concrete encasements around the steel pipelines.
- All gravel and sand materials used for pipe bedding in pipeline crossings of dewatered stream channels would be clean imported material free of biological, chemical or other pollutants.
- Sands, gravel and rock excavated from dewatered stream beds adjacent to highways have potential to contain pollutants from road runoff. These excavated materials would be disposed in approved upland disposal sites to avoid replacing contaminated material in the stream channels.
- Concrete placed around steel pipelines to form encasements would be pollution-free.
- Pipeline encasements would be placed to a depth below the scour potential of the stream or river.
- Equipment operators would be trained in appropriate work methods within sensitive aquatic environments.
- Excavated materials would be carefully placed in haul trucks to avoid spillage.
- Stream and river bank restoration plans would be prepared before construction begins within live stream channels and in riparian areas. Restoration plans would focus on restoring riparian vegetation and stream bed conditions to the same condition as before construction.

Construction activities may have adverse direct and indirect effects on wetland and riparian areas even with the implementation of BMPs. In these cases, additional mitigation measures, such as revegetation, may be necessary to offset impacts and could be implemented. Riparian areas that are not rated as being in Properly Functioning Condition may present mitigation opportunities, such as native vegetation enhancement and nonnative species removal. Many areas evaluated in the study area were determined to have conditions with downward trends from effects such as road encroachment, upstream sedimentation, livestock grazing and use, or other disturbances not associated with the proposed project activities. Areas with downward trends may not be appropriate target areas for enhancement unless the outside factors can also be addressed. Riparian areas with the highest functional assessment rating (e.g. the Paria River and LaVerkin Creek) could receive the most benefit from enhancement if additional mitigation is necessary.

Monitoring would be performed to make sure riparian revegetation measures result in restoring riparian vegetation cover to stream banks disturbed during construction of pipeline crossings. Monitoring would be performed annually during the growing season for up to three years following construction. If riparian revegetation objectives are not met within the three-year monitoring period, then additional riparian restoration mitigation measures would be implemented.

Operation and maintenance activities would not have any measurable or significant impacts on wetlands, riparian areas, or jurisdictional waters; therefore, no mitigation measures are proposed.

Mitigation measures are discussed in more detail in the Lake Powell Pipeline 404(b)(1) Analysis. See Appendix D.

Chapter 6 Unavoidable Adverse Impacts

6.1 South Alternative

6.1.1 Construction

Implementation of best management practices (BMPs) and standard construction procedures (SOPs) (see Chapter 5) would minimize adverse impacts on wetlands and riparian areas under the South Alternative. Some temporary, direct and indirect adverse impacts would occur on riparian resources and jurisdictional waters resulting in temporary loss of functions. Potential adverse impacts include temporary loss of vegetation, disruptions in hydrologic processes, soil disturbance and sedimentation, and impacts on water quality. Unavoidable adverse impacts would include short-term term loss of riparian vegetation at pipeline crossings and short-term loss of some riparian area functions.

6.1.2 Operation and Maintenance

Operation and maintenance of the South Alternative would have no unavoidable adverse impacts on wetlands and riparian areas.

6.2 Existing Highway Alternative

6.2.1 Construction

The Existing Highway Alternative would have the same short-term unavoidable adverse impacts on riparian areas and jurisdictional waters as the South Alternative, described in Section 6.1.1.

6.2.2 Operation and Maintenance

Operation and maintenance of the Existing Highway Alternative would have no unavoidable adverse impacts on wetlands and riparian areas.

6.3 Southeast Corner Alternative

6.3.1 Construction

The Southeast Corner Alternative would have the same short-term unavoidable adverse impacts on riparian areas and jurisdictional waters as the South Alternative, described in Section 6.1.1.

6.3.2 Operation and Maintenance

Operation and maintenance of the Southeast Corner Alternative would have no unavoidable adverse impacts on wetlands and riparian areas.

6.4 Transmission Line Alternatives

6.4.1 Construction

The Transmission Line Alternatives would have the same short-term unavoidable adverse impacts on riparian areas and jurisdictional waters as the South Alternative, described in Section 6.1.1.

6.4.2 Operation and Maintenance

Operation and maintenance of the Transmission Line Alternatives would have no unavoidable adverse impacts on wetlands and riparian areas.

6.5 No Lake Powell Water Alternative

The No Lake Powell Water Alternative is expected to have significant adverse indirect impacts on riparian areas in the St. George metropolitan area and portions of Cedar Valley. Restrictions on residential outdoor landscape watering would reduce groundwater recharge and decrease subsurface return flows to the Virgin River, its tributary streams and Cedar Valley streams within the influence of local groundwater recharge. The decrease in subsurface return flows could adversely affect riparian vegetation corridors and reduce the riparian area functions.

6.6 No Action Alternative

No unavoidable adverse impacts would occur.

Chapter 7 Cumulative Impacts

This chapter analyzes cumulative impacts that may occur from construction and operation of the proposed LPP project when combined with the impacts of other past, present, and reasonably foreseeable future actions and projects after all proposed mitigation measures have been implemented. Only those resources with the potential to cause cumulative impacts are analyzed in this chapter.

7.1 South Alternative

(The cumulative impacts analysis is pending completion for identification of inter-related projects that would cause cumulative impacts with the LPP project.)

7.2 Existing Highway Alternative

(The cumulative impacts analysis is pending completion for identification of inter-related projects that would cause cumulative impacts with the LPP project.)

7.3 Southeast Corner Alternative

(The cumulative impacts analysis is pending completion for identification of inter-related projects that would cause cumulative impacts with the LPP project.)

7.4 Transmission Line Alternatives

(The cumulative impacts analysis is pending completion for identification of inter-related projects that would cause cumulative impacts with the LPP project.)

7.5 No Lake Powell Water Alternative

(The cumulative impacts analysis is pending completion for identification of inter-related projects that would cause cumulative impacts with the LPP project.)

7.6 No Action Alternative

The No Action Alternative would have no cumulative impacts.

References Cited

- Adamus, P.R., E.J. Clairain, R.D. Smith, and R.E. Young. 1987. Wetland Evaluation Technique (WET), Volume II: Methodology. Department of the Army, Waterways Experiment Station, Vicksburg, MS. NTIS No. ADA 189968.
- Johnson, Craig, R. Pitts, L. Porreca, D. Frey. 2006. UDOT Wetland Functional Assessment Method, UDOT Report No. UT-06.12. April 2006.
- Reed, P. 1988. National List of Plant Species that Occur in Wetlands: Intermountain (Region 8) and Southwest (Region 7). United States Fish and Wildlife Service. Available at: <u>https://rsgis.crrel.usace.army.mil/NWPL_CRREL/docs/fws_lists/list88.html</u>
- Roth, E, Olsen, R, Snow, P and Sumner, R 1996, Oregon Freshwater Wetland Assessment Methodology, Oregon Division of State Lands, Salem, OR.
- U.S. Army Corps of Engineers (USACE). 2006. Interim Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Arid West Region, December 2006.
 - _____. 1987. Corps of Engineers Wetland Delineation Manual. Technical Report Y-87-1.
- U.S. Bureau of Land Management (BLM). 2003. Riparian Area Management TR-1737-16: A User Guide to Assessing Proper Functioning Condition and the Supporting Science for Lentic Areas. U. S. Department of the Interior, BLM, National Applied Resources Center, Denver, Colorado.
 - _____. 1998. Riparian Area Management TR-1737-15: A User Guide to Assessing Proper Functioning Condition and the Supporting Science for Lotic Areas. U. S. Department of the Interior, BLM, National Applied Resources Center, Denver, Colorado.
- U.S. Environmental Protection Agency (USEPA) and U.S. Army Corps of Engineers (USACE). 2007. Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States & Carabell v. United <u>States</u>.
- U.S. Congress. 1998. Public Law 105-355. Title II Grand Staircase-Escalante National Monument. Section 202, Utility Corridor Designation, U.S. Route 89, Kane County, Utah. November 6, 1998.
- Utah Division of Water Resources (UDWR). 2007. Draft municipal and industrial water supply and uses in the Cedar/Beaver Basin (Data collected for the year 2005). November 2007.

_____. 2008a. Municipal and industrial water supply and uses in the Kanab Creek/Virgin River Basin (Data collected for the year 2005). February 2008.

_____. 2011. *Water Needs Assessment, Draft, Lake Powell Pipeline*. Prepared by MWH, Inc. March 2011.

Abbreviations and Acronyms

Abbreviation/Acronym	Meaning/Description	
Alt.	Alternative	
BLM	Bureau of Land Management	
BMPs	Best Management Practices	
BPS	Booster Pump Station	
CBPS	Cedar Booster Pump Station	
CICWCD	Central Iron County Water Conservancy District	
FWS	Fish and Wildlife Service	
GIS	Geographic Information System	
gpcd	gallons per capita per day	
GOPB	Utah Governor's Office of Planning and Budget	
GSENM	Grand Staircase-Escalante National Monument	
HS	Hydro System	
KCWCD	Kane County Water Conservancy District	
kV	Kilovolt	
LPP	Lake Powell Pipeline	
M&I	Municipal and Industrial	
MSL	Mean Sea Level	
NAIP	National Agriculture Imagery Program	
NRCS	National Resource Conservation Service	
PFC	Proper Functioning Condition	
RO	Reverse Osmosis	
SITLA	School and Institutional Trust Lands Administration	
SOPs	Standard Construction Procedures	
TDS	Total Dissolved Solids	
UBWR	Utah Bureau of Water Rights	
UDOT	Utah Department of Transpiration	
UDWR	Utah Division of Water Resources	
USACE	U.S. Army Corps of Engineers	
USEPA	U.S. Environmental Protection Agency	
USGS	U.S. Geological Survey	
UST	Underground Storage Tanks	
VRDSM	Virgin River Daily Simulation Model	
WCH	Water Conveyance Hydro	
WCWCD	Washington County Water Conservancy District	
WET	Wetland Evaluation Technique	

List of Preparers

MWH Americas, Inc. Consultant Team					
Name	Degree(s)	Role			
Cindy Jones	M.S. – Environmental Studies/Science	Wetlands and Riparian Resources			
MWH, Inc.	and Biological Sciences	_			
	B.S. – Biology				
Eric Zimmerman	M.A. – Geography (Cartography)	GIS Analysis, GPS Measurement			
MWH, Inc.	B.A. – Geography	and Analysis			
	B.A. – Mass Communication				
Brian Liming M.S. – Civil and Environmental		Report QA/QC Review			
MWH, Inc. Engineering					
	B.S. – Ecosystems Analysis				
Diana Barnes	A.A. – Secretarial Science	Word Processing and Formatting			
MWH, Inc.					

Appendix A Wetland Delineation Report

Wetland Delineation Report for the

Lake Powell Pipeline Project

Prepared for

Utah Division of Water Resources

Prepared by

MWH Americas, Inc.

March 2011

Table of Contents

		Page
1.	Introduction	
2.	Study Area	1
3.	Methods	1
4.	Site Description	
	4.1 National Wetlands Inventory	
	4.2 Soils	
	4.3 Climate and Precipitation	
5.	Results	
6.	Conclusions	
7.	References	
Append	dix A – Wetland Determination Data Forms	A-1
Append	dix B – National Wetlands Inventory Map for Tributary East of Ash Creek	B-1
Append	dix C – Soil Survey Maps	C-1
	dix D – Photos of Could Wash Wetland	

Tables

Table Num	nber Table Title	Page
Table 1.	Study Area Features Evaluated Using the Three-Parameter Approach	3
Table 2.	National Wetlands Inventory Classifications at Study Area Features	
Table 3.	Soil Classifications at Study Area Features	
Table 4.	Precipitation Data at Weather Stations Near the Study Area	21

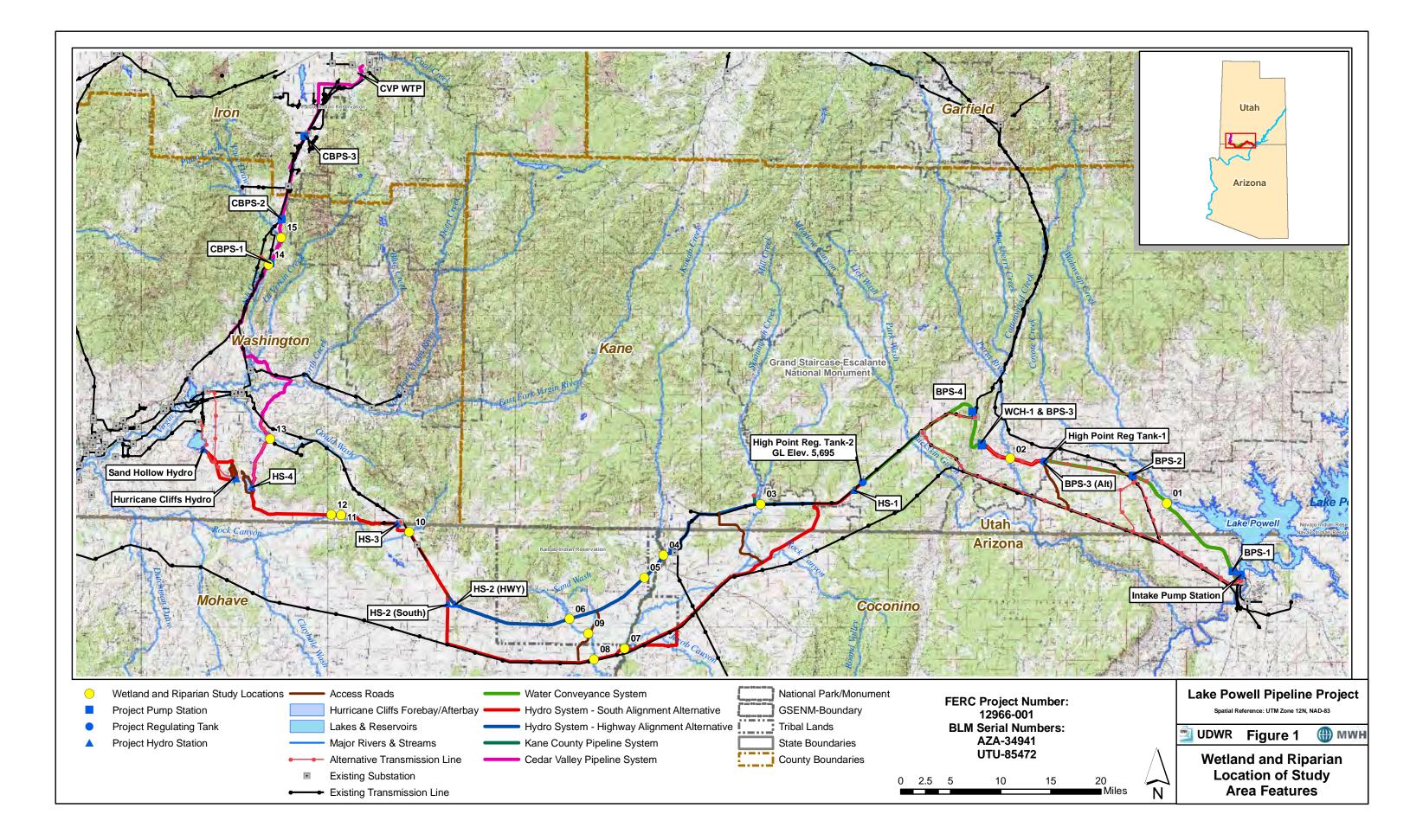
Figures

Figure Numl	per Figure Title	Page
Figure 1	Location of Study Area Features	2
Figure 2-1	Wetland Delineation Report Wash West of Blue Pool Wash	4
Figure 2-2	Wetland Delineation Report Paria River	5
Figure 2-3	Wetland Delineation Report Johnson Wash	6
Figure 2-4	Wetland Delineation Report Kanab Creek at Fredonia	7
Figure 2-5	Wetland Delineation Report Cottonwood Creek	
Figure 2-6	Wetland Delineation Report Two Mile Wash	
Figure 2-7	Wetland Delineation Report Kanab Creek at Jacob Canyon	
Figure 2-8	Wetland Delineation Report Bitter Seeps Wash	
Figure 2-9	Wetland Delineation Report Two Mile Wash at Mt. Trumbull Road	
Figure 2-10	Wetland Delineation Report Short Creek, Colorado City	
Figure 2-11	Wetland Delineation Report Short Creek, East Canaan Gap	14
Figure 2-12	Wetland Delineation Report Short Creek, West Canaan Gap	
Figure 2-13a		
Figure 2-13b	Wetland Delineation Report Gould Wash (Soil Pit Locations)	17
Figure 2-14	Wetland Delineation Report Ash Creek	
Figure 2-15	Wetland Delineation Report Tributary East of Ash Creek	

1. INTRODUCTION

Wetland determinations were conducted for all features in the study area that were observed to contain wetland and/or riparian vegetation. This included an evaluation of vegetation, soils, and hydrology. Wetlands determined to meet the three-parameter criteria during July 2009 field surveys were delineated. Wetland determinations and delineations were conducted in accordance with the 1987 U.S. Army Corps of Engineers (USACE) Wetland Delineation Manual (USACE 1987) and the Interim Regional Supplement to the USACE Wetland Delineation Manual for the Arid West (USACE 2006). This report addresses only those waters that were evaluated for the three-parameter wetland criteria. Other jurisdictional waters (i.e., those not containing riparian or wetland vegetation and therefore not evaluated for the three-parameter wetland criteria) are discussed in the Lake Powell Pipeline Wetlands and Riparian Resources Technical Report.

2. STUDY AREA


The study area for wetland determinations includes any areas of wetland and/or riparian vegetation along the entire length of the Lake Powell Pipeline alternative alignments and transmission corridors. The study area extends from the Lower Lake Powell watershed incorporating a portion of Lake Powell adjacent to Glen Canyon Dam in Coconino County, Arizona to the Virgin River watershed and Sand Hollow Reservoir in Washington County, Utah. The Cedar Valley Pipeline System would extend north from the Hurricane Cliffs afterbay through the upper Ash Creek basin and into Cedar Valley in Iron County, Utah (Figure 1).

3. METHODS

A field investigation, including determination and delineation of wetlands that are potentially subject to USACE jurisdiction under Section 404 of the Clean Water Act, was conducted between July 21 and July 24, 2009, in accordance with 1987 USACE Wetland Delineation Manual (USACE 1987) and the Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual for the Arid West (USACE 2006). The 1987 manual and 2006 Arid West Supplement outline methods for determining and delineating jurisdictional wetlands using the three-parameter approach. This approach requires that an area with positive indicators of hydrophytic vegetation, hydric soils, and wetland hydrology be considered a jurisdictional wetland. Arid West Region wetland determination data forms were completed for 32 sample points and are provided in Appendix A.

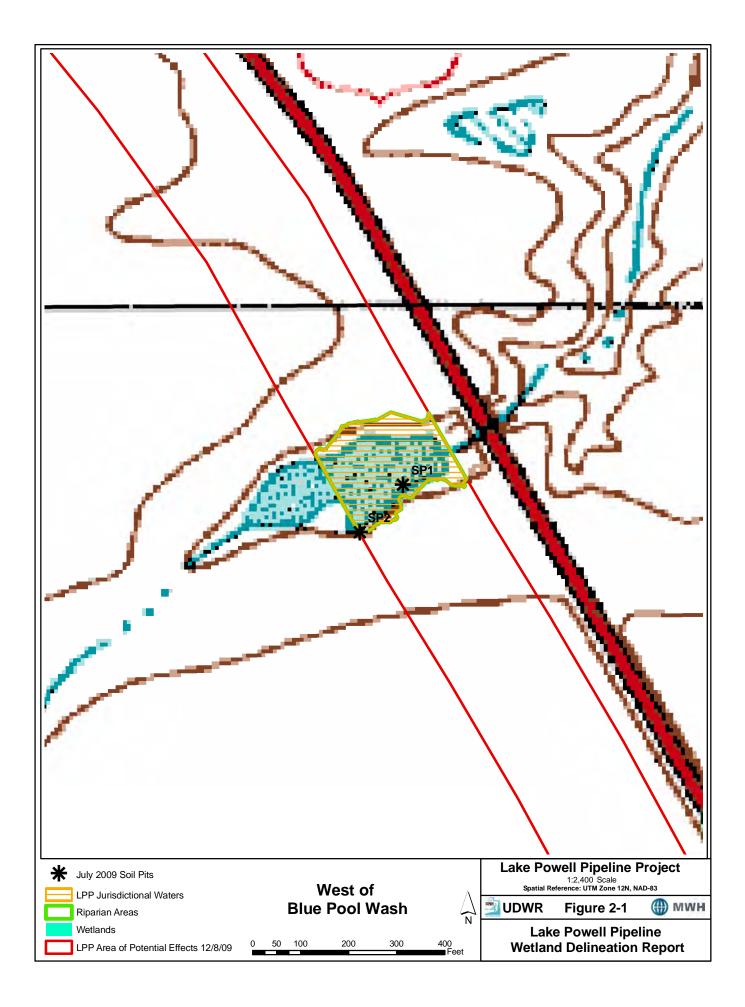
Wetland determinations followed the Routine On-site method, as described in the 1987 manual. Features were evaluated using paired sample points. At each sample point, vegetation was evaluated in an approximately 5-foot radius plot for herbs and shrubs and a 30-foot radius plot for trees. Dominant plant species were identified using the 50/20 method. Wetland indicator status was determined for the dominant species using the U.S. Fish and Wildlife Service's National List of Plants That Occur in Wetlands: Intermountain (Region 8) and Southwest (Region 7) (Reed 1988). Hydrophytic species include those listed as obligate (OBL), facultative wetland (FACW, FACW*), or facultative (FAC, FAC*, FAC+, and FAC-) species. Other species are designated as no indicator (NI) or upland (UPL), as identified in Reed (1988). NI is assigned for those species for which insufficient information was available to determine an indicator status (Reed 1988). Species that are not listed in Reed (1988) are considered to be UPL species (USACE 2006). The sample site was considered dominated by hydrophytic vegetation if the percentage of dominant hydrophytic species was greater than 50 percent.

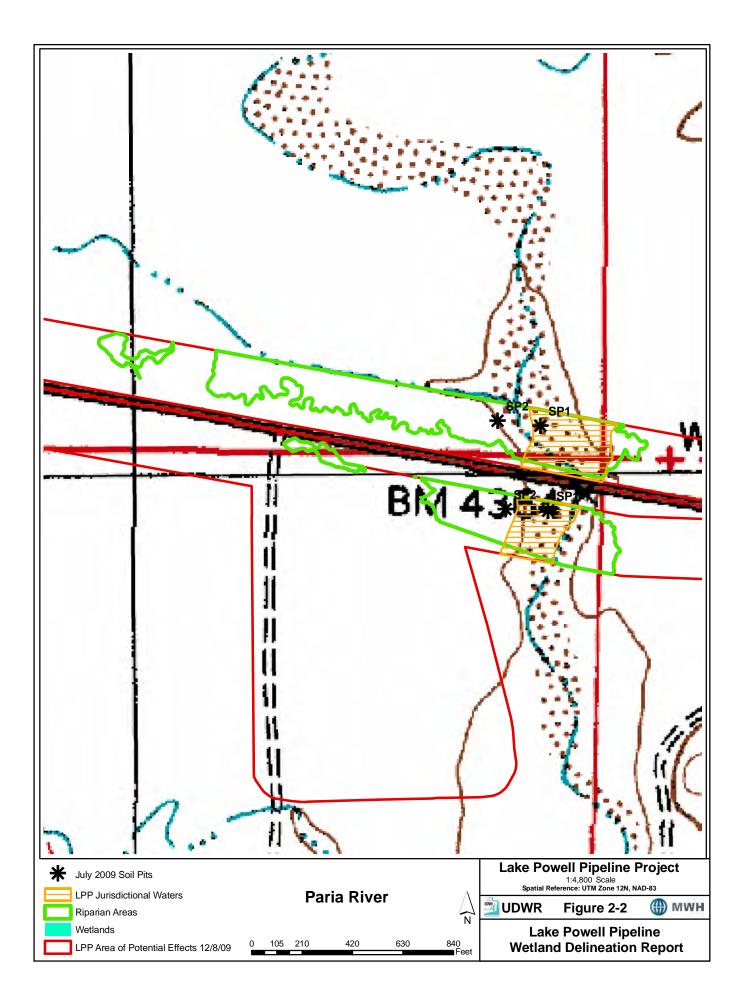
Soil pits at each sample point were excavated to 18 inches below ground surface, or at refusal, if refusal occurred at less than 18 inches. Soil texture and redoximorphic features were evaluated at different soil horizons, and soil color was described using the Munsell Soil Color Charts (Munsell Color 1990). These and other characteristics were compared to criteria outlined in the Arid West Supplement for hydric soils (USACE 2006).

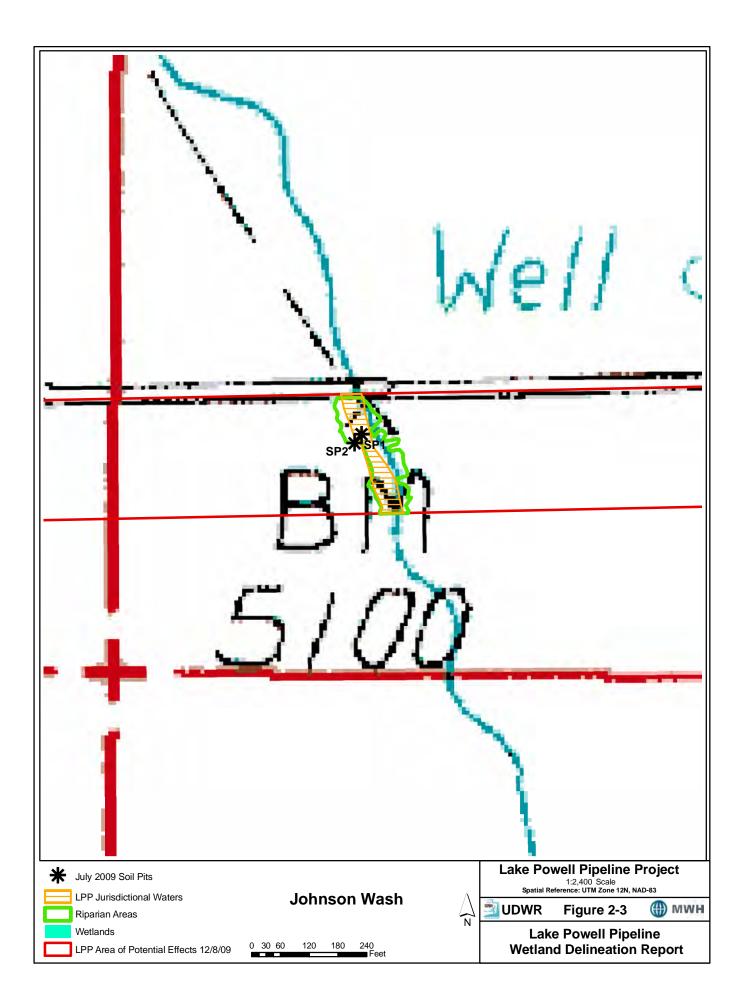
Wetland hydrology was assessed at each sample point by recording observations, including water marks, drainage patterns, drift lines, and other indicators of wetland hydrology, as identified in the Arid West Supplement (USACE 2006). See datasheets attached in Appendix A.

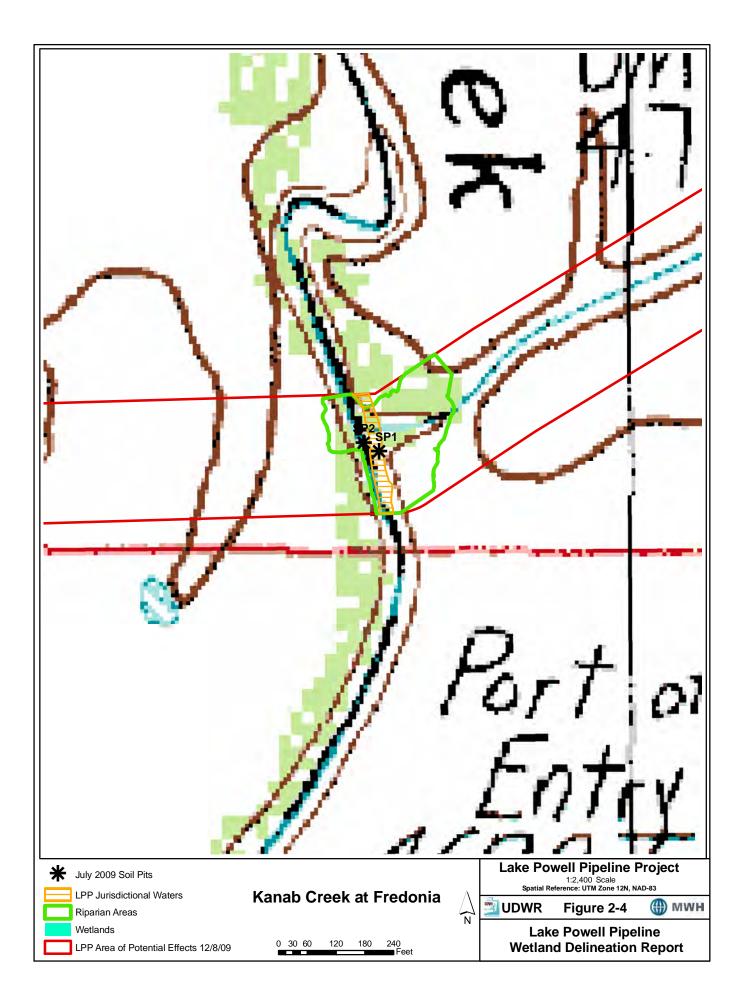
Sample points were mapped using a Trimble GEO XH GPS unit. The boundaries of wetland areas meeting threeparameter criteria were delineated in the field with GPS. Boundaries of areas of riparian vegetation were also delineated. GPS data were post-processed with sub-meter accuracy. GPS data were recorded in NAD 83 datum.

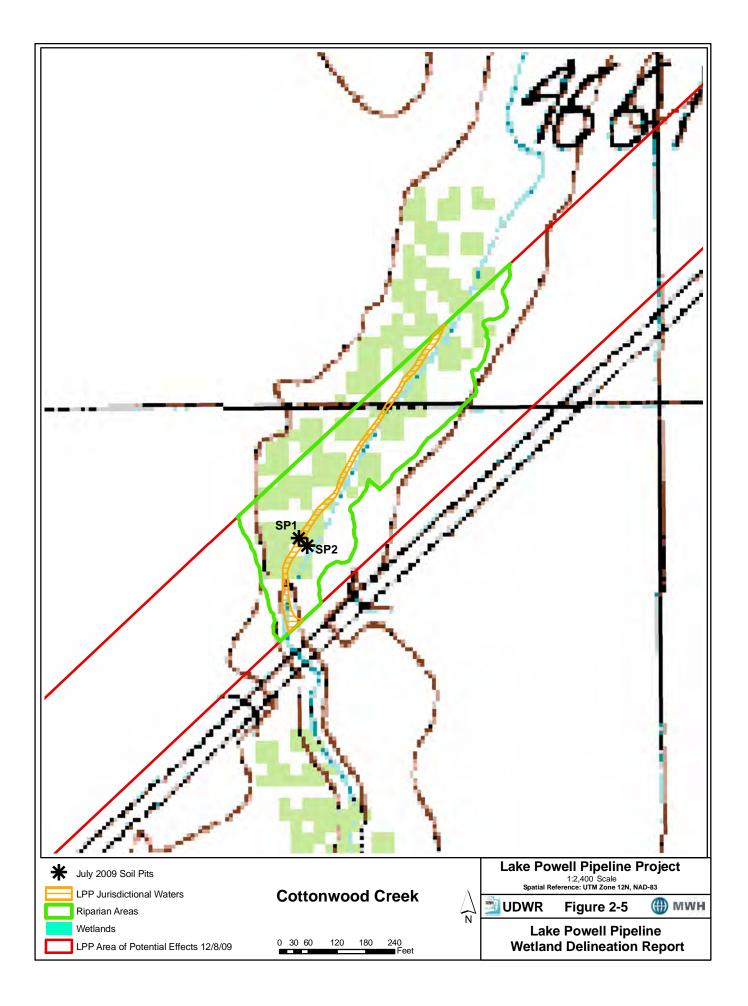
4. SITE DESCRIPTION

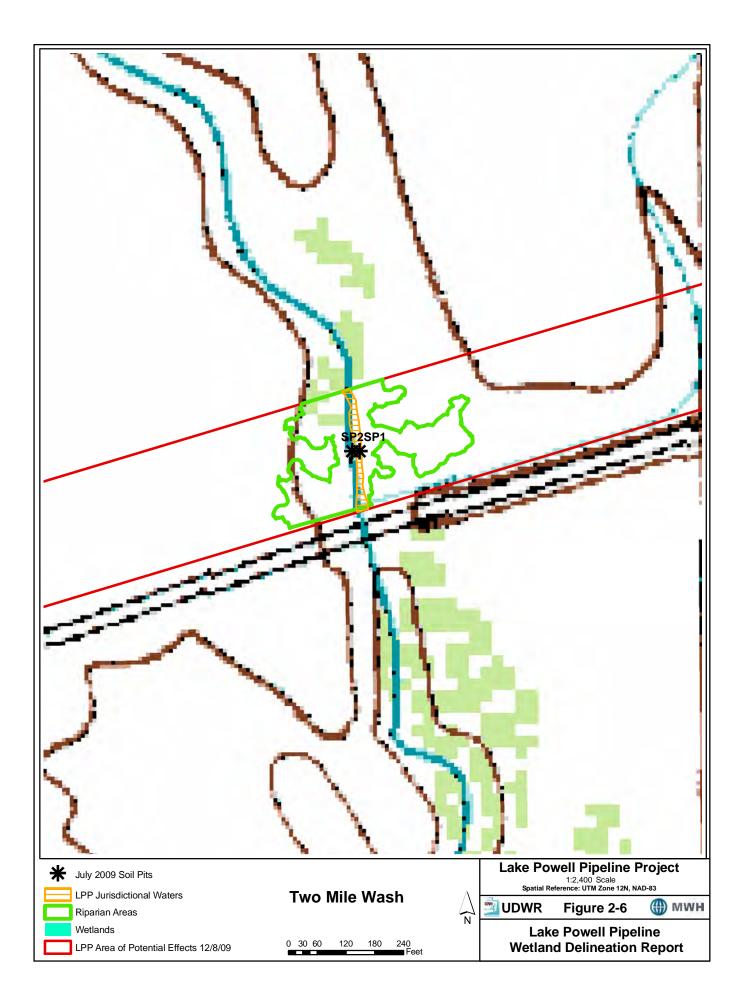

Study area features evaluated using the three-parameter approach are summarized in Table 1. The general locations of these features are depicted in Figure 1. USGS topographic maps displaying features, soil pits, wetland boundaries, and other jurisdictional waters are displayed in Figures 2-1 through 2-15.

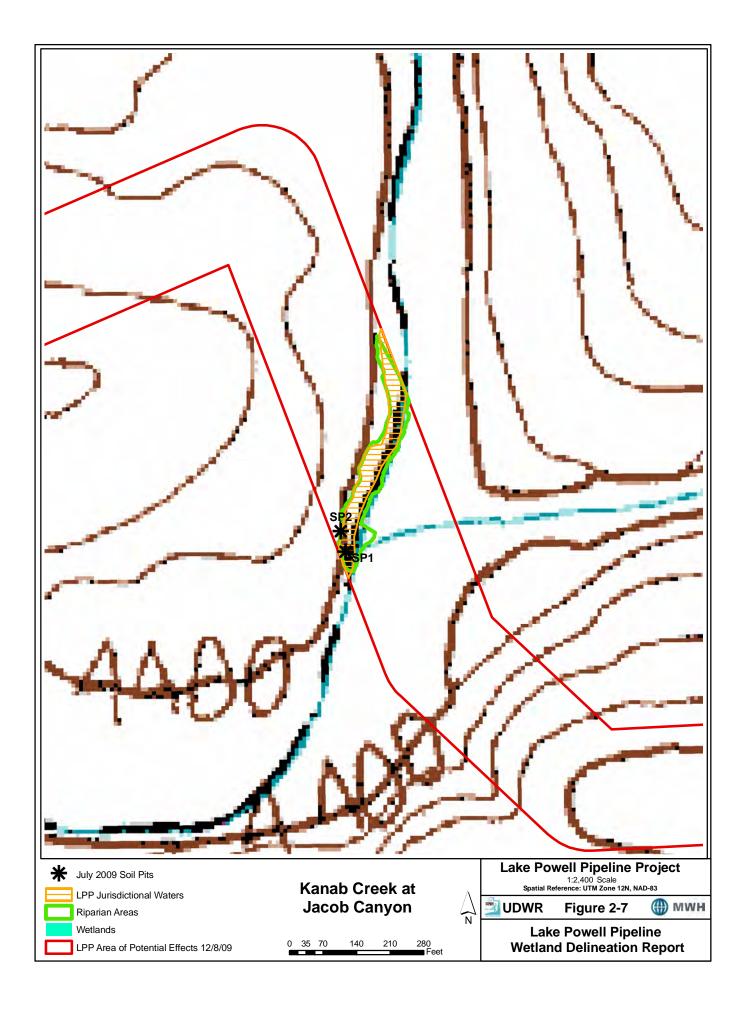

Map Key	Feature	Watershed	Location	USGS Topo mapping	Tributary to
1	West of Blue Pool Wash	Lower Lake Powell	Kane County, UT	Perennial pond/wetland fed by intermittent stream	Wahweap Creek
2	Paria River	Paria River	Kane County, UT	Perennial stream	Colorado River
3	Johnson Wash	Kanab Creek	Kane County, UT	Perennial stream	Kanab Creek
4	Kanab Creek at Fredonia	Kanab Creek	Mohave County, AZ	Perennial stream	Colorado River
5	Cottonwood Creek	Kanab Creek	Mohave County, AZ	Perennial stream	Kanab Creek
6	Two Mile Wash	Kanab Creek	Mohave County, AZ	Perennial stream	Bitter Seeps Wash
7	Kanab Creek at Jacob Canyon	Kanab Creek	Mohave County, AZ	Perennial stream	Colorado River
8	Bitter Seeps Wash	Kanab Creek	Mohave County, AZ	Perennial stream	Bulrush Wash -> Kanab Creek
9	Two Mile Wash at Mt. Trumbull Road	Kanab Creek	Mohave County, AZ	Perennial stream	Bitter Seeps Wash
10	Short Creek, Colorado City	Fort Pierce Wash	Mohave County, AZ	Perennial stream	Fort Pierce Wash -> Virgin River
11	Short Creek, East Canaan Gap	Fort Pierce Wash	Washington County, UT	Intermittent stream	Fort Pierce Wash -> Virgin River
12	Short Creek, West Canaan Gap	Fort Pierce Wash	Washington County, UT	Intermittent stream	Fort Pierce Wash -> Virgin River
13	Gould Wash	Virgin River	Washington County, UT	Intermittent stream	Virgin River
14	Ash Creek (adjacent to gravel pit)	Virgin River	Washington County, UT	Perennial stream	Virgin River
15	Tributary East of Ash Creek	Virgin River	Washington County, UT	Intermittent stream	Ash Creek

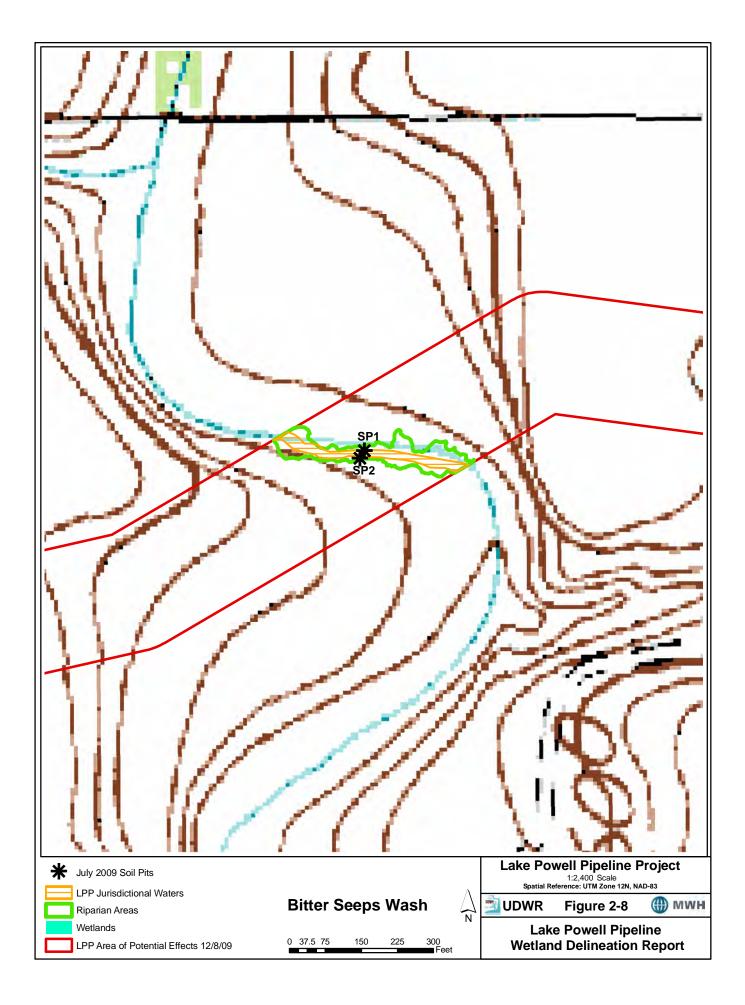

Table 1. Study area features evaluated using the three-parameter approach.

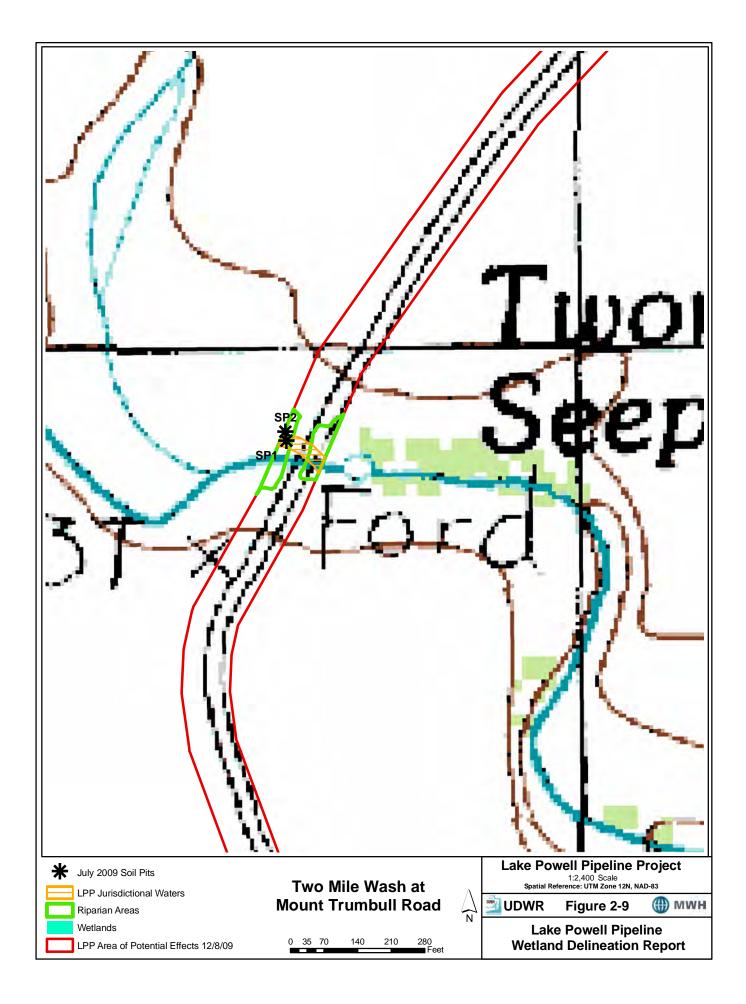

4.1. National Wetlands Inventory

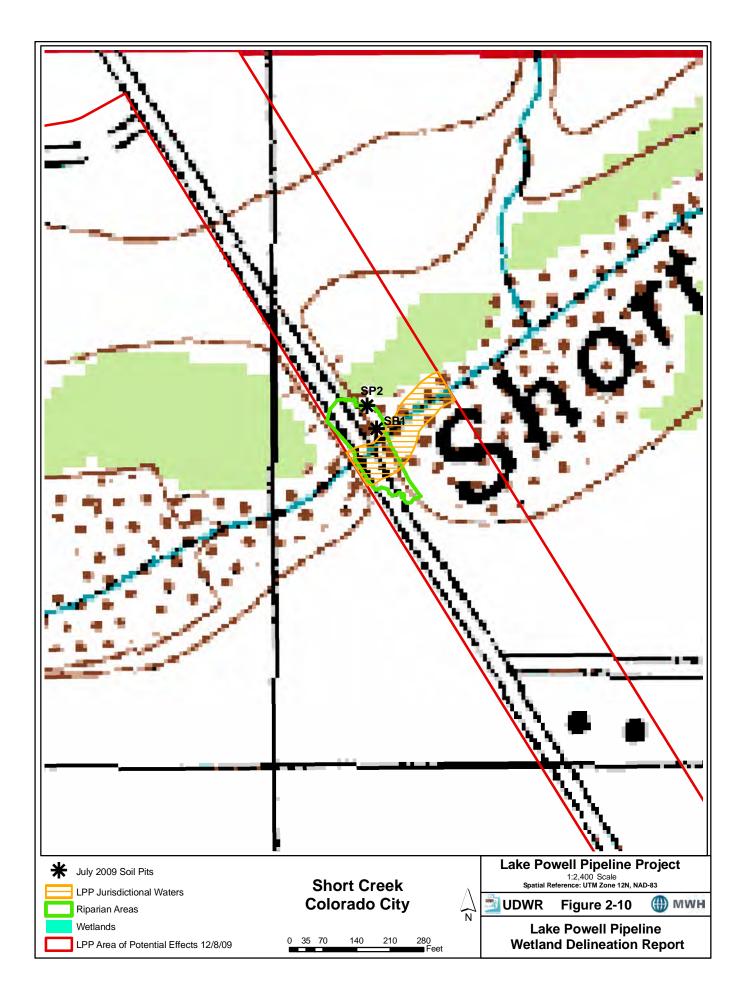

The U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) website was queried for wetland maps of all features in the study area (U.S. Department of Fish and Wildlife 2009). Electronic data were only available for the tributary east of Ash Creek (Table 2). This map is attached in Appendix B.

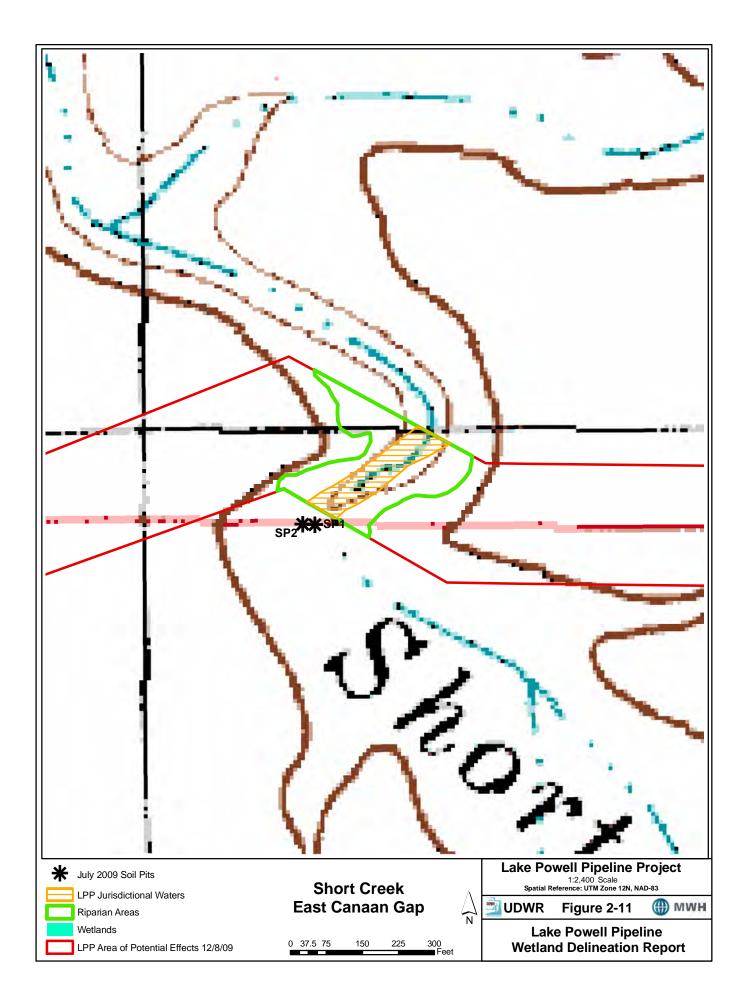


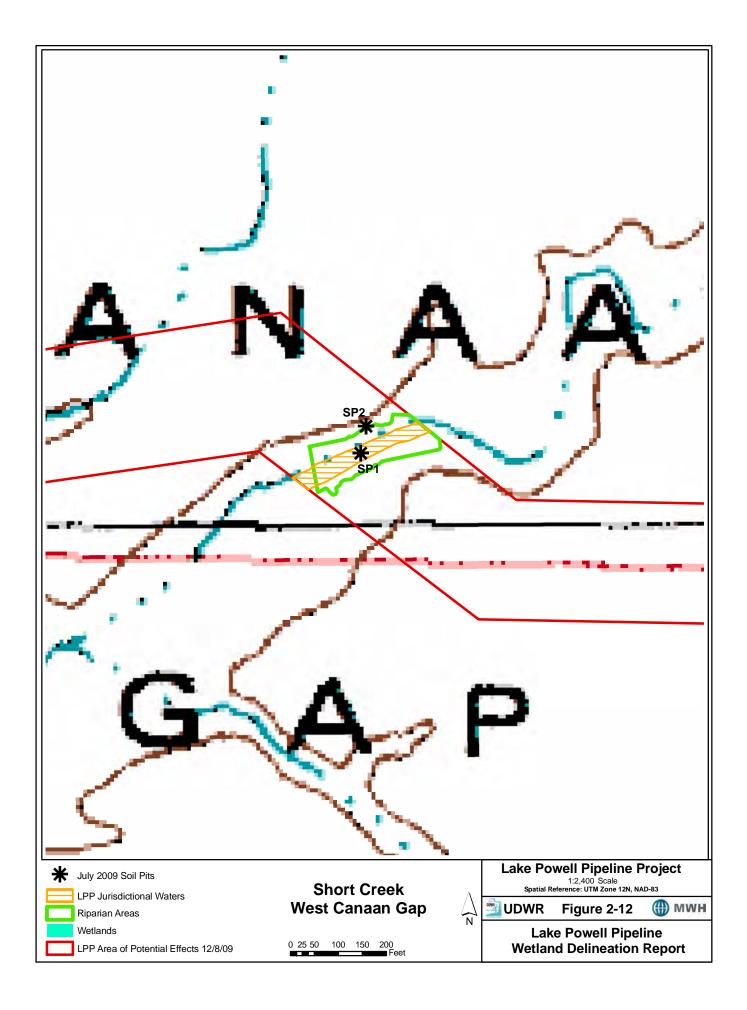


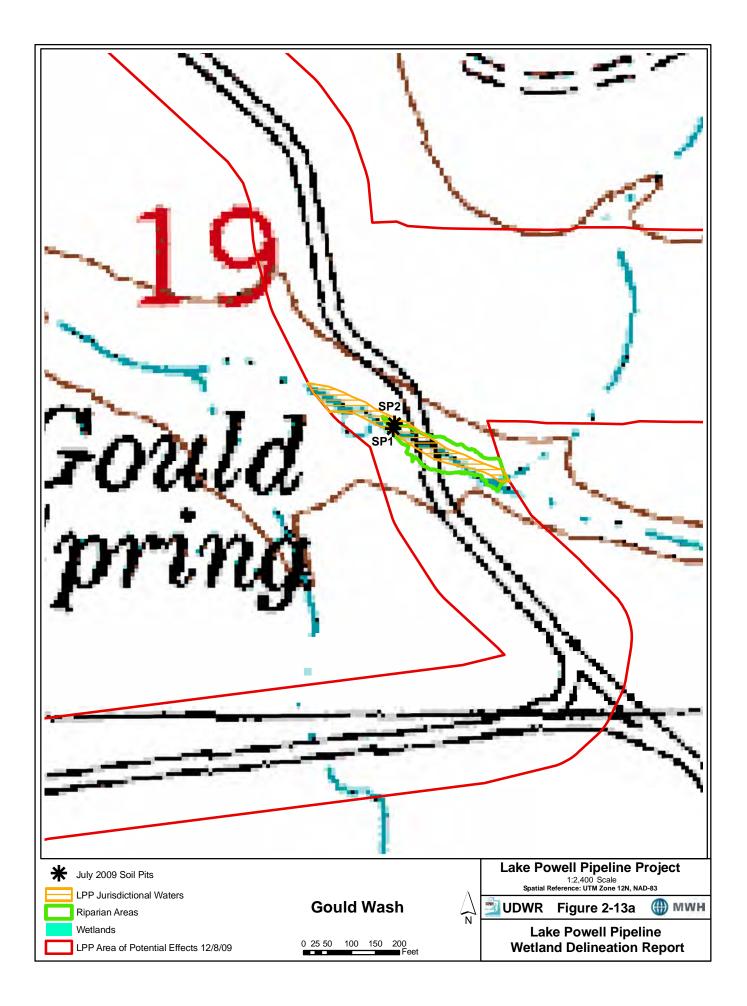


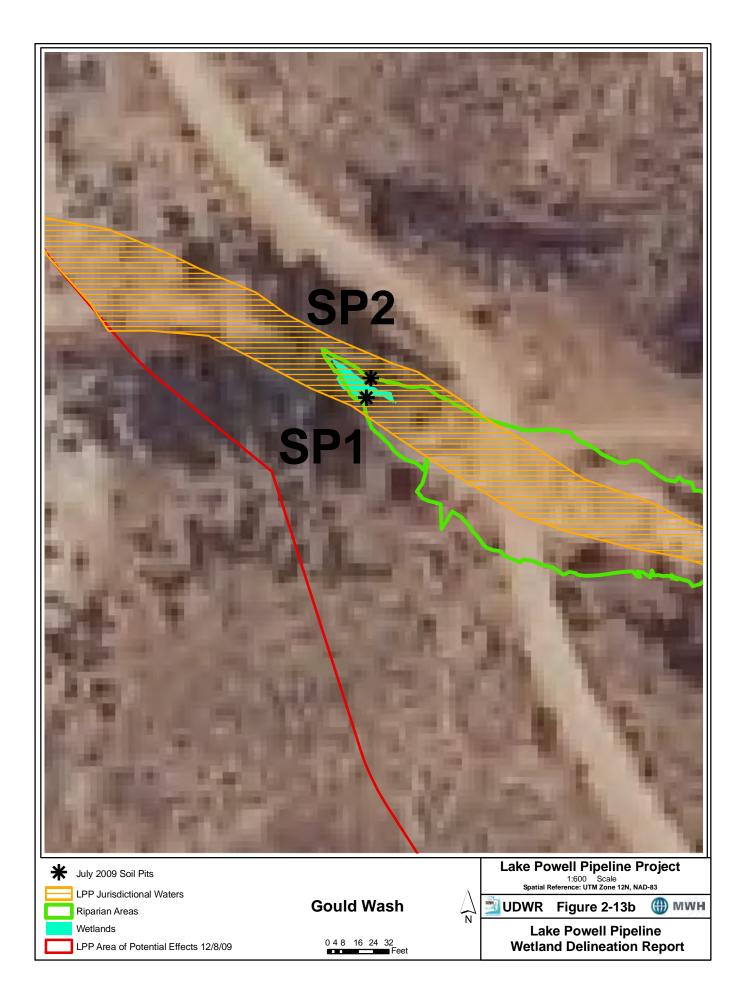


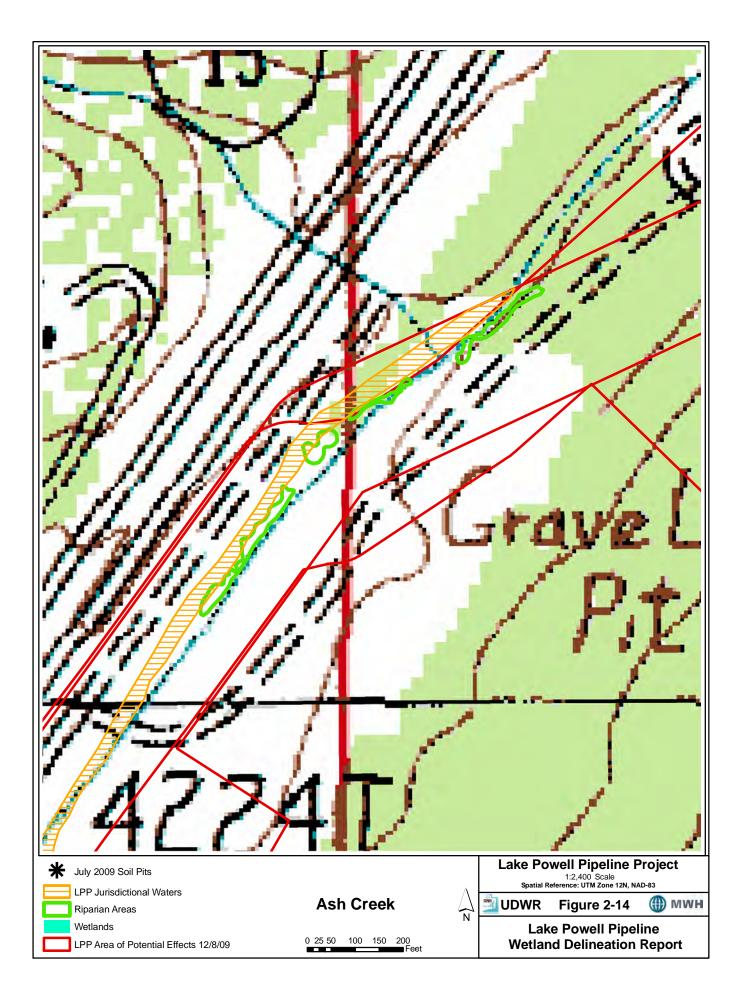












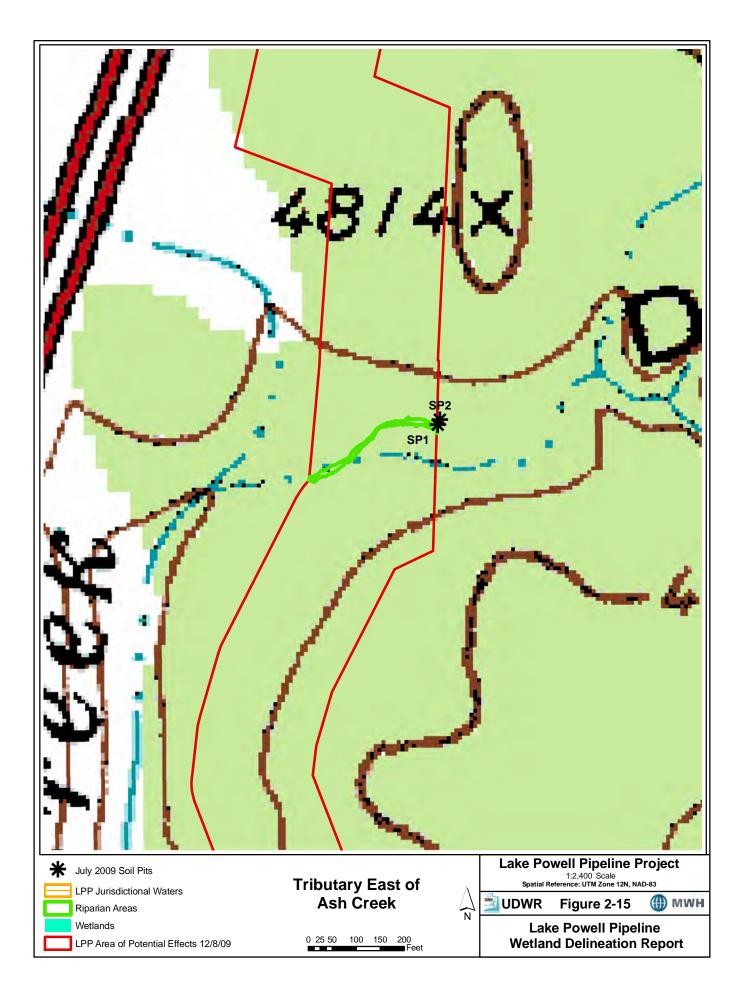


Table 2. National Wetlands Inventory classifications at study area features.

Feature	NWI Classification
West of Blue Pool Wash	Data Not Available
Paria River	Data Not Available
Johnson Wash	Data Not Available
Kanab Creek at Fredonia	Data Not Available
Cottonwood Creek	Data Not Available
Two Mile Wash	Data Not Available
Kanab Creek at Jacob Canyon	Data Not Available
Bitter Seeps Wash	Data Not Available
Two Mile Wash at Mt. Trumbull Road	Data Not Available
Short Creek, Colorado City	Data Not Available
Short Creek, East Canaan Gap	Data Not Available
Short Creek, West Canaan Gap	Data Not Available
Gould Wash	Data Not Available
Ash Creek (adjacent to gravel pit)	Data Not Available
Tributary East of Ash Creek	Upland

4.2. Soils

NRCS Web Soil Survey (NRCS 2009) data were evaluated to identify mapped location of hydric soils. Soil map unit name and hydric ratings are summarized in Table 3. Soil survey maps are attached in Appendix C.

Table 3. Soil classifications at study area features.

Feature	Soil Map Unit Name	Hydric Rating
West of Blue Pool Wash	Data Not Available	Data Not Available
Paria River	Green River-Radnik, moist-Suwanee, saline complex, 0 to 5 percent slopes	Partially hydric
Johnson Wash	Data Not Available	Data Not Available
Kanab Creek at Fredonia	Glenyon silty clay loam, 0 to 2 percent slopes	Non-hydric
Cottonwood Creek	Sheppard fine sand, 1 to 7 percent slopes	Non-hydric
Two Mile Wash	Mido loamy fine sand, 1 to 4 percent slopes, gullied	Non-hydric
Kanab Creek at Jacob Canyon	Torriorthents-Rock outcrop complex, warm, 30 to 70 percent slopes	Non-hydric
Bitter Seeps Wash	Pennell gravelly loam, 1 to 12 percent slopes	Non-hydric
Two Mile Wash at Mt. Trumbull Road	Sheppard loamy fine sand, 1 to 4 percent slopes, gullied	Non-hydric
Short Creek, Colorado City	Mido loamy fine sand, 1 to 4 percent slopes, gullied	Non-hydric
Short Creek, East Canaan Gap	Naplene silt loam, 2 to 6 percent slopes	Non-hydric
Short Creek, West Canaan Gap	Schmutz loam	Non-hydric
Gould Wash	Pastura-Esplin complex, 0 to 10 percent slopes	Non-hydric
Ash Creek (adjacent to gravel pit)	Chilton gravelly loam, 5 to 30 percent slopes	Non-hydric
Tributary East of Ash Creek	Menefee-Rock outcrop complex, 25 to 60 percent slopes	Non-hydric

4.3. Climate and Precipitation

The field survey was conducted on clear days with temperatures ranging from approximately 75°F to 98°F. Historical climate data were available from eight National Oceanic and Atmospheric Administration's (NOAA) National Weather Service Cooperative Observer Program weather stations (NOAA 2009). Precipitation at all weather stations was below average for the month of July and the average of July 2009 and preceding twelve months (see Table 4).

		Wahweap, AZ			Big Water, UT		Paria	Ranger Static	n, UT		Fredonia, AZ	
	2008/2009	Mean (46- 48 years)	Difference	2008/2009	Mean (18- 24 years)	Difference	2008/2009	Mean (7- 10 years)	Difference	2008/2009	Mean (40- 45 years)	Difference
August	1.73	0.77	0.96	1.38	0.79	0.59	0.90	0.84	0.06	1.54	1.23	0.31
September	0.00	0.62	-0.62	0.29	0.76	-0.47	1.19	0.84	0.35	0.05	0.89	-0.84
October	0.00	0.84	-0.84	0.15	0.95	-0.80	0.28	1.38	-1.10	*	*	*
November	0.68	0.57	0.11	0.64	0.45	0.19	0.99	0.60	0.39	1.66	0.79	0.87
December	0.12	0.41	-0.29	*	*	*	*	*	*	1.31	0.97	0.34
January	0.23	0.52	-0.29	*	*	*	0.48	0.66	-0.18	0.50	1.13	-0.63
February	0.06	0.54	-0.48	0.35	0.68	-0.33	0.34	0.40	-0.06	*	*	*
March	0.00	0.61	-0.61	0.04	0.72	-0.68	0.08	0.49	-0.41	0.00	0.90	-0.90
April	0.00	0.37	-0.37	0.06	0.43	-0.37	0.00	0.47	-0.47	0.13	0.64	-0.51
May	1.30	0.38	0.92	1.33	0.34	0.99	1.76	0.40	1.36	0.53	0.49	0.04
June	0.06	0.18	-0.12	0.84	0.19	0.65	0.40	0.26	0.14	0.11	0.30	-0.19
July	0.00	0.53	-0.53	0.18	0.51	-0.33	0.50	0.67	-0.17	0.13	0.74	-0.61
Annual Average	0.35	0.53	-0.18	0.53	0.58	-0.06	0.63	0.64	-0.01	0.60	0.81	-0.21

Table 4. Precipitation data at weather stations near the study area.

-21-

3/10/11 Utah Board of Water Resources

		Kanab, UT	-	Р	ipe Springs, A	Z	Co	olorado City, A	ĄΖ		LaVerkin, UT	
	2008/2009	Mean (96- 105 years)	Difference	2008/2009	Mean (44- 47 years)	Difference	2008/2009	Mean (42- 44 years)	Difference	2008/2009	Mean (52- 60 years)	Difference
August	1.58	1.41	0.17	0.80	1.35	-0.55	*	*	*	0.24	0.89	-0.65
September	0.14	1.19	-1.05	0.11	0.87	-0.76	0.00	1.20	-1.20	0.02	0.80	-0.78
October	0.65	1.07	-0.42	0.51	0.91	-0.40	0.00	1.03	-1.03	0.70	0.79	-0.09
November	1.62	1.03	0.59	1.72	0.87	0.85	1.38	1.13	0.25	1.61	0.96	0.65
December	2.00	1.23	0.77	1.12	0.78	0.34	1.69	1.04	0.65	2.52	0.92	1.60
January	0.51	1.53	-1.02	0.63	1.21	-0.58	0.63	1.37	-0.74	0.68	1.35	-0.67
February	0.92	1.50	-0.58	0.80	1.19	-0.39	0.59	1.53	-0.94	1.67	1.45	0.22
March	0.04	1.49	-1.45	0.03	1.07	-1.04	0.02	1.53	-1.51	0.02	1.45	-1.43
April	0.29	1.01	-0.72	0.23	0.72	-0.49	0.27	0.93	-0.66	0.29	0.75	-0.46
May	0.66	0.62	0.04	0.95	0.50	0.45	0.27	0.60	-0.33	0.27	0.49	-0.22
June	0.26	0.35	-0.09	0.25	0.31	-0.06	0.27	0.40	-0.13	0.15	0.27	-0.12
July	0.94	1.04	-0.10	0.33	0.96	-0.63	0.01	1.17	-1.16	0.20	0.71	-0.51
Annual Average	0.80	1.12	-0.32	0.62	0.90	-0.27	0.47	1.08	-0.62	0.70	0.90	-0.21

5. RESULTS

Only one feature, Gould Wash, met the three-parameter criteria for wetland determination. Gould Wash is an intermittent stream that drains to the Virgin River. The wetland occurs within and adjacent to the well-defined drainage channel. Wetland hydrologic indicators at soil pit 1 included sediment deposits, drift deposits, surface soil cracks, and salt crusts.

Vegetation in and adjacent to the channel was dominated by hydrophytic species. The wetland area was composed of an herbaceous layer only. At the sample point, creeping spikerush (*Eleocharis macrostachya* [OBL]) was dominant. Broad leaf cattail (*Typha latifolia* [OBL]) also occurred on the riparian shelf in wetland area, and annual rabbit-foot grass (*Polypogon monspeliensis* [FACW+]) was observed in the channel. Saltcedar (*Tamarix ramosissima* [FACW]) was observed in the riparian area outside of the wetland.

Soils within the wetland area were sand. Redoximorphic features (concentrations) were observed within the first 10 inches of the soil matrix, but the matrix chroma did not meet sandy redox criteria (Indicator S5) in the Arid West Supplement (USACE 2006). A hydrogen sulfide odor was detected in the pit; however, which meets Indicator A4 criteria for hydric soils in the Supplement.

Soil pit 2 was located on the riparian shelf above the delineated wetland area. Hydrophytic vegetation was dominant at this location (Bermuda grass [*Cynodon dactylon* [FAC]]); however, soil and hydrology criteria were not met.

Photos of the Gould Wash wetland are attached in Appendix D. The delineated boundaries of Gould Wash wetland and soil pits are displayed in Figure 2. Refer also to wetland determination forms in Appendix A.

6. CONCLUSIONS

Many of the features evaluated met vegetation criteria for wetlands, and some met hydrology criteria; however, no features other than Gould Wash exhibited hydric soils, as defined in the Arid West Supplement (USACE 2006). Refer to wetland determination data forms in Appendix A for more detailed information.

Although Gould Wash was the only feature to meet all wetland criteria, other features may be considered jurisdictional waters based on other criteria (i.e. navigable waterways and those water bodies near navigable waterways). Presumed boundaries of jurisdictional waters for the features evaluated in this report are displayed in Figures 2-1 through 2-15. Jurisdictional determinations are addressed in the Lake Powell Pipeline Wetlands and Riparian Resources Technical Report. Please refer to this report for more information.

The wetland acreage of Gould Wash within the project study area is 0.01. This occurs within a 0.60 acre riparian area contained within the study area. The delineated wetland area would not be directly affected by project construction, but could be indirectly affected by siltation or erosion.

This report documents the investigation, best professional judgment, and conclusions of the investigator. It should be considered a preliminary determination of wetlands unless it has been reviewed and approved in writing by the USACE.

7. REFERENCES

Munsell Color. 1990. Munsell Soil Color Charts. Kollmorgen Instruments Corporation.

- Natural Resources Conservation Service (NRCS), United States Department of Agriculture (USDA). 2009. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/ [accessed December 2009].
- National Oceanic and Atmospheric Administration (NOAA). National Weather Service. 2009. Cooperative Observer Program. Available online at http://www.nws.noaa.gov/om/coop/ [accessed December 2009].
- Reed, P. 1988. National List of Plant Species that Occur in Wetlands: Intermountain (Region 8) and Southwest (Region 7). United States Fish and Wildlife Service. Available at: <u>https://rsgis.crrel.usace.army.mil/NWPL_CRREL/docs/fws_lists/list88.html</u>
- U.S. Army Corps of Engineers (USACE). 2006. Interim Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Arid West Region, December 2006.
- U.S. Army Corps of Engineers (USACE), Environmental Laboratory. 1987. Corps of Engineers Wetland Delineation Manual. Technical Report Y-87-1.
- U.S. Department of Fish and Wildlife (USFWS). 2009. National Wetlands Inventory Wetlands Mapper. Available at: <u>http://www.fws.gov/wetlands/Data/Mapper.html</u> [accessed November and December 2009].

APPENDIX A

WETLAND DETERMINATION DATA FORMS

Project Site:	Lake Pov	vell Pip	peline - West of	Blue F	ool Wash	Ci	ty/County	<i>'</i> :	Ka	ne		Sampling Da	ate:	7/24	/09	
Applicant/Owner:	Utah Divi	sion o	f Water Resourc	es					Sta	te: L	JT	Sampling Po	pint:	Soil	Pit #1	i
Investigator(s):	C. Jones	, B. Lir	ning, E. Zimmer	man		Sectio	on, Towns	ship, Ra	nge:	T43S R	3E S30	1				
Landform (hillslope, ter	race, etc.): F	Riparian area			Local relief	(concave	e, conve	ex, nor	ne): No	one		Slop	e (%):	0	
Subregion (LRR):	Interior	Deser	ts Lat:		37.04535144	Lon	g:		-111.	6230039	0	Datum:		WGS 8	4	
Soil Map Unit Name:	Not map	pped								N/	NI class	ification:	Not map	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, ex	xplain in	Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	irbed?	Are "No	rmal Ci	rcums	tances" pi	resent?		Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	natic?	(If need	ed, exp	lain ar	ny answer	s in Rer	marks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes		No	\boxtimes				
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	\boxtimes	No					
Remarks:								

VEGETATION

Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:				
1. Tamarix ramosissima 2.	60	Y	FACW	Number of Dominant Species T OBL, FACW, or FAC:	hat Are	1		(A)
3. 4.				Total Number of Dominant Spe All Strata:	cies Across	2		(B)
Sapling/Shrub Stratum	60	= Total Cove	er	Percent of Dominant Species T OBL, FACW, or FAC:	hat Are	50%		(A/B)
1.				Prevalence Index worksheet:				
2.				Total %Cover of :		Multipl	<u>y by:</u>	
3.				OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
		= Total Cove	er	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1. Stanleya pinnata	<1	Y	UPL	Column Totals:	(A)			(B)
2.				Prevalence	Index = B/A	=		
3.				Hydrophytic Vegetation Indic	ators:			
4.				Dominance Test is	>50%			
5.				Prevalence Index is	s <u><</u> 3.0 ¹			
6. 7.				Morphological Adap Remarks or on a se			oorting da	ita in
8.				Problematic Hydrop	hytic Vegets	ation ¹ (Exp	lain)	
	<1	= Total Cove	er	r toblematic riyurop	nylic vegete		nan i)	
Woody Vine Stratum								
1.				¹ Indicators of hydric soil and we	etland hydrol	ogy must	be prese	nt.
2.								
		= Total Cove	er	Hydrophytic Vegetation				
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes		No	\boxtimes
Remarks:	•		•	-			•	

SOIL											Sam	pling Poi	nt: Soil Pit	#1	
Profile Desc	ription: (Describ	e to the	e depti	n neede	ed to d	ocument the indicator or	r confirm	n the abse	ence of indi	cators	5.)				
Depth	Matri	ix				Redox Features	6								
(inches)	Color (moist)		%	Co	lor (Mo	oist) % Ty	ype ¹	Loc ²	Tex	ture			Remark	S	
0-2	7.5 YR 6/4		100						S	and					
2-3	7.5 YR 6/2		100						Claye	ey sano	b				
3-6	7.5 YR 6/4		100						S	and					
6-7	7.5 YR 6/2		100						Claye	ey sano	d				
7-24	7.5 YR 6/4		100						S	and					
						ix, ² Location: PL=Pore Lir	ning, RC	C=Root Ch							
-		icable	to all L	RRs, u	_	otherwise noted.)			_		ors for Pro		•	ioils":	
Histoso						Sandy Redox (S5)				_	1 cm Muck		-		
	Epipedon (A2)					Stripped Matrix (S6)				_	2 cm Muck		-		
	Histic (A3)					Loamy Mucky Mineral (F			_		Reduced V				
	gen Sulfide (A4)					Loamy Gleyed Matrix (F2	2)		[Red Paren				
	ed Layers (A5) (L l	-				Depleted Matrix (F3)			[Other (Exp	lain in Re	marks)		
_	luck (A9) (LRR D)					Redox Dark Surface (F6)									
-	ed Below Dark Su	urface (/	411)			Depleted Dark Surface (F	F7)								
Thick [Dark Surface (A12	2)				Redox Depressions (F8)									
Sandy	Mucky Mineral (S	61)				Vernal Pools (F9)			3	Indicat	ors of hydr	ophytic v	egetation a	and wetla	and
Sandy	Gleyed Matrix (S4	4)							h	ydrolo	gy must be	e present.			
Restrictive I	_ayer (if present)):													
Type:															_
Depth (Inche								•	ils Present?			Yes		No	\boxtimes
Remarks:	Thin layers of cla	ayey sa	nd occu	ur in the	e upper	7 inches of the sand profile	le. No re	dox featur	es were obs	erved.					
HYDROLO Wetland Hyd	GY drology Indicator	rs:													
-	ators (any one ind		is suffic	cient)					Se	conda	ry Indicato	rs (2 or m	ore require	ed)	
□ Surfac	e Water (A1)					Salt Crust (B11)				Wa	ter Marks ((B1) (Rive	erine)		
□ High V	Vater Table (A2)					Biotic Crust (B12)				Se	diment Dep	osits (B2) (Riverin	e)	
	ation (A3)					Aquatic Invertebrates (B1	13)			Dri	ft Deposits	(B3) (Riv	erine)		
	Marks (B1) (Noni	riverine	a)			Hydrogen Sulfide Odor (0	,				ainage Patt				
	ent Deposits (B2))		Oxidized Rhizospheres a		ving Roots			-Season V				
	eposits (B3) (Non	-		,		Presence of Reduced Iro	-	5		-	n Muck Su				
	e Soil Cracks (B6		,			Recent Iron Reduction in	. ,	Soils (C6)			ayfish Burro		,		
_	ation Visible on Ae		agerv (B7)		Other (Explain in Remark		- ()			uration Vis		erial Imag	erv (C9)	
	-Stained Leaves (5	,	_		-,				allow Aquit			, ()	
		/									C-Neutral 7				
Field Observ	vations:														
Surface Wate	er Present?	Yes		No	\boxtimes	Depth (inches):									
Water Table	Present?	Yes		No	\boxtimes	Depth (inches):									
Saturation Pr	resent? billary fringe)	Yes		No	\boxtimes	Depth (inches):			Wetland H	ydrolo	gy Preser	it?	Yes		lo 🗆

Remarks:

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Project Site:	Lake Pov	well Pip	peline - West of	Blue F	ool Wash	Ci	ty/County	:	Kar	ne		Sampling Da	ate:	7/24/	09	
Applicant/Owner:	Utah Divi	ision of	f Water Resourc	es					Sta	ate:	UT	Sampling Po	pint:	Soil I	Pit #2	2
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sectio	on, Towns	hip, Rai	nge:	T43S	R3E S30)				
Landform (hillslope, ter	race, etc.): R	Riparian area			Local relief	(concave	, conve	x, nor	ne): N	lone		Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	ts Lat:		37.0450777	Lon	g:		-111.	.623313		Datum:		WGS 8	4	
Soil Map Unit Name:	Not ma	pped								١	WI clas	sification:	Not map	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no,	explain ir	n Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly dist	urbed?	Are "No	rmal Cir	cumst	tances"	present?		Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally proble	matic?	(If need	ed, expla	ain an	ny answe	ers in Re	marks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No	\boxtimes				
Hydric Soil Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	No	\boxtimes				
Remarks:							

VEGETATION

Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:				
1. 2.				Number of Dominant Species Th OBL, FACW, or FAC:	nat Are	0		(A)
3. 4.				Total Number of Dominant Spec All Strata:	ies Across	1		(B)
Sapling/Shrub Stratum		= Total Cove	er	Percent of Dominant Species Th OBL, FACW, or FAC:	nat Are	0%		(A/B)
1.				Prevalence Index worksheet:				
2.				Total %Cover of :		Multipl	<u>y by:</u>	
3.				OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
		= Total Cove	er	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1. Salsola kali	5	Y	FACU	Column Totals:	(A)			(B)
2.				Prevalence Ir	ndex = B/A :	=		
3.				Hydrophytic Vegetation Indica	tors:			
4.				Dominance Test is >				
5.				Prevalence Index is	<u><</u> 3.0 ¹			
6. 7.				Morphological Adapt Remarks or on a sep			oorting da	ata in
8.				Problematic Hydroph		tion ¹ (Evr	alain)	
	5	= Total Cove	٥r	Fibblematic Hydropi	iyiic vegela		Jan	
Woody Vine Stratum	ů.							
1.				¹ Indicators of hydric soil and wet	land hydrol	ogy must	be prese	nt.
2.								
		= Total Cove	er	Hydrophytic Vegetation				
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes		No	
Remarks:	•			- '	·			

Inches) Color (moist) % Color (Moist) % Type1 Loc2 Texture Remarks 0-18 7.5 YR 5/4 100 0	Depth	Matrix			Redox I	Features							
Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ² Location: PL=Pore Lining, RC=Root Channel, M=Matrix. ydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ : Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Biack Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) 2 mick Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and we hydrology must be present. estrictive Layer (if present): ype: * Yes No	nches)	Color (moist)	%	Color (Moi	ist) %	Type ¹	Loc ²	Texture			Remar	ks	
dric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ : Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and we hydrology must be present. setrictive Layer (if present): pe: Hydric Soils Present? Yes No	0-18	7.5 YR 5/4	100					Sand					
Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Sandy Gleyed Matrix (S4) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and we hydrology must be present. strictive Layer (if present): pe: Hydric Soils Present? Yes No						-	C=Root Chann						
Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and we hydrology must be present. strictive Layer (if present): Hydric Soils Present? Yes No			e to all LF	,	,							Soils ³ :	
Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and we hydrology must be present. strictive Layer (if present): Medic Soils Present? Yes No						-					-		
Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Thick Dark Surface (A12) Redox Depressions (F8) 3Indicators of hydrophytic vegetation and we hydrology must be present. strictive Layer (if present): Hydric Soils Present? Yes No	Histic	Epipedon (A2)			Stripped Matrix (S6)			2 cm Muck	(A10) (L	RR B)		
Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Dark Surface (F7) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and we hydrology must be present. strictive Layer (if present): Hydric Soils Present? Yes No	Black	Histic (A3)			Loamy Mucky M	ineral (F1)			Reduced V	ertic (F18	3)		
1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) 3Indicators of hydrophytic vegetation and we hydrology must be present. strictive Layer (if present): be: the (Inches):	Hydrog	gen Sulfide (A4)			Loamy Gleyed M	latrix (F2)			Red Parent	Material	(TF2)		
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) Sandy Gleyed Matrix (S4) Hydrology must be present. strictive Layer (if present): Hydric Soils Present? Yes No	Stratifi	ed Layers (A5) (LRR C))		Depleted Matrix	(F3)			Other (Expl	ain in Re	marks)		
Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) Sandy Gleyed Matrix (S4) Strictive Layer (if present): e: th (Inches): Hydric Soils Present? Yes No	1 cm N	/luck (A9) (LRR D)			Redox Dark Sur	face (F6)							
Sandy Mucky Mineral (S1) Vernal Pools (F9) Sandy Gleyed Matrix (S4) Indicators of hydrophytic vegetation and we hydrology must be present. strictive Layer (if present): e: bth (Inches): Hydric Soils Present? Yes No	Deplet	ed Below Dark Surface	(A11)		Depleted Dark S	urface (F7)							
Sandy Gleyed Matrix (S4) Indicators of hydrophytic Vegetation and we hydrology must be present. strictive Layer (if present):	Thick I	Dark Surface (A12)			Redox Depression	ons (F8)							
Sandy Gleyed Matrix (S4) hydrology must be present. strictive Layer (if present): hydrology must be present. be: hydrology must be present? bth (Inches): Hydric Soils Present? Yes	Sandy	Mucky Mineral (S1)			Vernal Pools (F9))		³ Indic	ators of hydro	onhytic ve	aetation	and wet	hand
be: Hydric Soils Present? Yes I No	Sandy	Gleyed Matrix (S4)									getation		ana
bth (Inches): Hydric Soils Present? Yes 🗌 No	strictive	Layer (if present):											
	be:												
marks:		s):					Hydric Soils F	Present?		Yes		No	\boxtimes
	pth (Inche					•							

wettand Hydrology indicators:									
Primary Indicators (any one indicator is sufficient)				Sec	ondary Indicators (2 or r	more requi	red)		
Surface Water (A1)		Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
High Water Table (A2)		Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	ie)		
Saturation (A3)		Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	iverine)			
Water Marks (B1) (Nonriverine)		Hydrogen Sulfide Odor (C1)			Drainage Patterns (B1	10)			
Sediment Deposits (B2) (Nonriverine)		Oxidized Rhizospheres along Living Roots	s (C3)		Dry-Season Water Ta	ble (C2)			
Drift Deposits (B3) (Nonriverine)		Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
Surface Soil Cracks (B6)		Recent Iron Reduction in Tilled Soils (C6)			Crayfish Burrows (C8))			
Inundation Visible on Aerial Imagery (B7)		Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	ery (C	9)	
Water-Stained Leaves (B9)					Shallow Aquitard (D3)				
					FAC-Neutral Test (D5)			
Field Observations:									
Surface Water Present? Yes D No	\boxtimes	Depth (inches):							
Water Table Present? Yes D No	\boxtimes	Depth (inches):							
Saturation Present? Yes I No (includes capillary fringe)		Depth (inches):	Wetlar	nd Hy	drology Present?	Yes		No	\boxtimes
Describe Recorded Data (stream gauge, monitoring	g well,	aerial photos, previous inspections), if availa	able:						
Remarks:									

٦

Project Site:	Lake Pov	vell Pip	oeline – Paria Ri	ver, No	orth Side	City/County: Kane			Sampling D	ate:	7/24	/09			
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					Stat	e: UT	Sampling P	oint:	Soil	Pit #1	l
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmeri	man		Sectio	on, Towns	ship, Rar	ige:	T42S R1	W S33				
Landform (hillslope, ter	rrace, etc.): R	Riparian area			Local relief	(concave	e, conve	k, none	e): Non	e	Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		37.10818817	Lon	g:		-111.9	9065454	Datum:		WGS 8	84	
Soil Map Unit Name:	Green I	River-R	adnik, moist-Su	wanee	e, saline complex	, 0 to 5 perc	ent slope	S		NW	I classification:	Not ma	pped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	r this t	time of year?	Yes	\boxtimes	No		(If no, exp	lain in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly dist	urbed?	Are "No	rmal Ciro	cumsta	ances" pre	sent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally probler	natic?	(If need	ed, expla	ain any	y answers	in Remarks.)				

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes		No	\boxtimes				
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Netland Hydrology Present?	Yes	\boxtimes	No					
Remarks: Soil pit is on west sandbar adjacent to chann	el.							

VEGETATION Absolute Dominant Indicator Tree Stratum (Use scientific names.) **Dominance Test Worksheet:** % Cover Species? Status 1. Number of Dominant Species That Are 0 (A) OBL, FACW, or FAC: 2. 3. Total Number of Dominant Species Across 1 (B) All Strata: 4. = Total Cover Percent of Dominant Species That Are 0% (A/B) OBL, FACW, or FAC: Sapling/Shrub Stratum FACW 1. Tamarix ramosissima 10 Ν Prevalence Index worksheet: Chrysothamnus viscidiflorus UPL Total %Cover of : 2. 20 Y Multiply by: 3. **OBL** species x1 = FACW species 4. x2 = 5. FAC species x3 = 30 = Total Cover FACU species x4 = Herb Stratum UPL species x5 = 1. (A) (B) Column Totals: 2. Prevalence Index = B/A = 3. Hydrophytic Vegetation Indicators: 4. Dominance Test is >50% 5. Prevalence Index is <3.01 6. Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 7. 8. Problematic Hydrophytic Vegetation¹ (Explain) = Total Cover Woody Vine Stratum ¹Indicators of hydric soil and wetland hydrology must be present. 1. 2. = Total Cover Hydrophytic Vegetation \boxtimes Present? Yes No % Bare Ground in Herb Stratum % Cover of Biotic Crust Remarks:

	Matrix		Redox Fe	atures									
inches)	Color (moist) %	Color (Me	oist) %	Type ¹	Loc ²	Texture		Remarl	ks				
0-18	7.5 YR 4/4 100					Silty sand	Gravel cobble a	t 12"+					
- ype: C= C	Concentration, D=Depletion, R	RM=Reduced Mat	rix, ² Location: PL=P	Pore Lining, RC	C=Root Channe	el, M=Matrix.							
· ·	Indicators: (Applicable to a			<u> </u>			ors for Problematic	Hydric	Soils ³ :				
] Histos	sol (A1)		Sandy Redox (S5)	ļ	1 cm Muck (A9) (LRR C)								
] Histic	Epipedon (A2)		Stripped Matrix (S	6)	2 cm Muck (A10) (LRR B)								
] Black	Histic (A3)		Loamy Mucky Min	eral (F1)			Reduced Vertic (F18	3)					
] Hydro	ogen Sulfide (A4)		Loamy Gleyed Ma	trix (F2)			Red Parent Material	(TF2)					
] Stratif	fied Layers (A5) (LRR C)		Depleted Matrix (F	3)			Other (Explain in Re	marks)					
	Muck (A9) (LRR D)		Redox Dark Surface	ce (F6)		_							
] 1 cm	eted Below Dark Surface (A11)	Depleted Dark Sur	rface (F7)									
] 1 cm] Deple			Depleted Dark Sur Redox Depression	. ,									
1 cm Deple Thick	eted Below Dark Surface (A11	·	•	. ,		³ Indicat	tors of hydrophytic y	actation	and wot	and			
1 cm Deple Thick Sandy	eted Below Dark Surface (A11 Dark Surface (A12)		Redox Depression	. ,			tors of hydrophytic ve gy must be present.	egetation	and wet	land			
] 1 cm] Deple] Thick] Sandy] Sandy	eted Below Dark Surface (A11 Dark Surface (A12) y Mucky Mineral (S1)		Redox Depression	. ,				egetation	and wet	land			
1 cm Deple Thick Sandy	eted Below Dark Surface (A11 Dark Surface (A12) y Mucky Mineral (S1) y Gleyed Matrix (S4)		Redox Depression	. ,				egetation	and wet	land			

Wetland Hydrology Indicators:													
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or i	more requii	ed)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2)				Biotic Crust (B12)		\boxtimes	Sediment Deposits (B	2) (Riverin	e)		
	Saturation (A3)					Aquatic Invertebrates (B13)		\boxtimes	Drift Deposits (B3) (R	iverine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B	10)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverir	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
	Surface Soil Cracks (I	B6)				Recent Iron Reduction in Tilled Soils (C6))		Crayfish Burrows (C8))			
						Other (Explain in Remarks)			Saturation Visible on	Aerial Imag	ery (C	9)	
	o , , , , , , , , , ,								Shallow Aquitard (D3))			
									FAC-Neutral Test (D5)			
Field	ield Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (st	tream ga	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avail	able:						
Rem	Remarks:												

Project Site:	Lake Po	well Pip	peline – Paria Ri	ver, N	orth Side	City/County: Kane			e	Sampling D	ate:	7/24	/09		
Applicant/Owner:	Utah Div	vision o	f Water Resourc	es					Sta	te: UT	Sampling P	oint:	Soil	Pit #2	2
Investigator(s):	C. Jones	s, B. Lir	ming, E. Zimmer	man		Sectio	on, Towns	ship, Rar	nge:	T42S R1W	S33				
Landform (hillslope, te	rrace, etc.	.): F	Riparian area			Local relief	(concave	e, conve	x, non	e): None		Slop	e (%):	0	
Subregion (LRR):	Interior	Deser	ts Lat:		37.10824522	Lon	g:		-111.9	907156	Datum:		WGS 8	34	
Soil Map Unit Name:	Green	River-F	Radnik, moist-Su	wanee	e, saline complex	, 0 to 5 perc	ent slope	S		NWI c	lassification:	Not ma	pped		
Are climatic / hydrolog	ic conditic	ons on t	the site typical fo	or this	time of year?	Yes	\boxtimes	No		(If no, explai	n in Remarks.)				
Are Vegetation ,	Soil	□,	Or Hydrology	□,	significantly dist	urbed?	Are "No	rmal Cir	cumst	ances" prese	nt?	Yes	\boxtimes	No	
Are Vegetation ,	Soil	□,	Or Hydrology	□,	naturally proble	matic?	(If need	ed, expla	ain an	y answers in	Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes		No	\boxtimes				
Remarks: Soil pit is on riparian shelf.								

VEGETATION								
Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:				
1. Tamarix ramosissima	85	Y	FACW	Number of Dominant Species T OBL, FACW, or FAC:	hat Are	1		(A)
2. 3.				Total Number of Dominant Spe	cies Across			
4.				All Strata:		1		(B)
	85	= Total Cove	er	Percent of Dominant Species T	hat Are	100%		(A/B)
Sapling/Shrub Stratum				OBL, FACW, or FAC:				(
1.				Prevalence Index worksheet:				
2.				Total %Cover of :		Multipl	<u>y by:</u>	
3.				OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
		= Total Cove	er	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1.				Column Totals:	(A)			(B)
2.				Prevalence	Index = B/A =	=		
3.				Hydrophytic Vegetation Indic	ators:			
4.				Dominance Test is	>50%			
5.				Prevalence Index is	s <u><</u> 3.0 ¹			
6.				Morphological Adap			orting da	ta in
7.				Remarks or on a se	parate sheet	t)		
8.				Problematic Hydrop	hytic Vegeta	ition ¹ (Exp	lain)	
		= Total Cove	er					
Woody Vine Stratum								
1.				¹ Indicators of hydric soil and we	atland hydrolo	ogy must	be presei	nt.
2.								
		= Total Cove	er	Hydrophytic Vegetation				
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes	\boxtimes	No	
Remarks:								

	Matrix				Redox Fe	atures										
nches)	Color (moist)	% C	olor (Mo	ist)	%	Type ¹	Loc ²	Texture	Remarks							
0-18	10 YR 4/3 1	00						Silty san	Dry to bottom of pit.							
				2												
	Concentration, D=Depletior Indicators: (Applicable t					ore Lining, I	RC=Root Channe		ators for Problematic Hydric Soils ³ :							
] Histos	sol (A1)			Sandy	Redox (S5)			1 cm Muck (A9) (LRR C)								
Histic	Epipedon (A2)			Strippe	ed Matrix (Se	6)	2 cm Muck (A10) (LRR B)									
Black	Histic (A3)			Loamy	Mucky Mine	eral (F1)			Reduced Vertic (F18)							
Hydro	gen Sulfide (A4)			Loamy	Gleyed Mat	rix (F2)			Red Parent Material (TF2)							
Stratif	ied Layers (A5) (LRR C)			Deplet	ed Matrix (F	3)			Other (Explain in Remarks)							
1 cm l	Muck (A9) (LRR D)			Redox	Dark Surfac	e (F6)		_								
Deple	ted Below Dark Surface (A	\11)		Deplet	ed Dark Sur	face (F7)										
Thick	Dark Surface (A12)			Redox	Depression	s (F8)										
] Sandy	/ Mucky Mineral (S1)			Vernal	Pools (F9)			³ Indic	cators of hydrophytic vegetation and wetland							
Sandy	/ Gleyed Matrix (S4)								blogy must be present.							
	Layer (if present):															
estrictive																
estrictive																

Wetland Hydrology Indicators:													
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	nore requi	red)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	ıe)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	verine)			
	Water Marks (B1) (No	nriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B1	0)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (No	onriverir	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
	Surface Soil Cracks (B	36)				Recent Iron Reduction in Tilled Soils (C6))		Crayfish Burrows (C8)				
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	jery (C	9)	
								Shallow Aquitard (D3)					
	Water-Stained Leaves (B9)								FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetlar	nd Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (st	ream gau	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if availa	able:						
Rem	arks:												

Project Site:	Lake Po	well Pip	oeline – Paria Ri	ver, So	outh Side	Cit	y/County	:	Kan	e	Sampling D	ate:	7/24	/09	
Applicant/Owner:	Utah Div	ision o	f Water Resourc	es					Stat	e: UT	Sampling Po	oint:	Soil	Pit #1	I
Investigator(s):	C. Jones	s, B. Lir	ning, E. Zimmer	man		Sectio	n, Towns	hip, Rar	nge:	T43S R1W	S4				
Landform (hillslope, te	rrace, etc	:.): F	Riparian area			Local relief	(concave	, conve	k, none	e): None		Slope	e (%):	0	
Subregion (LRR):	Interior	r Deser	ts Lat:		37.10721824	Long	g:		-111.9	064272	Datum:		WGS 8	84	
Soil Map Unit Name:	Green	River-F	Radnik, moist-Su	wanee	e, saline complex	, 0 to 5 perc	ent slope	s		NWI c	lassification:	Not map	oped		
Are climatic / hydrolog	ic conditio	ons on t	the site typical fo	or this t	time of year?	Yes	\boxtimes	No		(If no, explai	in in Remarks.)				
Are Vegetation ,	Soil	□,	Or Hydrology	□,	significantly dist	urbed?	Are "No	rmal Ciro	cumsta	ances" prese	nt?	Yes	\boxtimes	No	
Are Vegetation ,	Soil	□,	Or Hydrology	□,	naturally probler	natic?	(If neede	ed, expla	ain any	answers in	Remarks.)				

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes		No	\boxtimes				
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	\boxtimes	No					
Remarks: Soil pit is on west terrace adjacent to channe	l.							

VEGETATION Absolute Dominant Indicator Tree Stratum (Use scientific names.) **Dominance Test Worksheet:** % Cover Species? Status 1. Number of Dominant Species That Are 0 (A) OBL, FACW, or FAC: 2. 3. Total Number of Dominant Species Across 2 (B) All Strata: 4. = Total Cover Percent of Dominant Species That Are 0% (A/B) OBL, FACW, or FAC: Sapling/Shrub Stratum 1. Tamarix ramosissima 10 Ν FACW Prevalence Index worksheet: Chrysothamnus viscidiflorus UPL 2. 15 Υ Total %Cover of : Multiply by: 3. **OBL** species x1 = FACW species 4. x2 = 5. FAC species x3 = 25 = Total Cover FACU species x4 = Herb Stratum UPL species x5 = FACU 1. Salsola kali 10 Υ (A) (B) Column Totals: 2. 5 Ν UPL Chrysothamnus viscidiflorus Prevalence Index = B/A = 3. Hydrophytic Vegetation Indicators: 4. Dominance Test is >50% 5. Prevalence Index is <3.01 6. Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 7. 8. Problematic Hydrophytic Vegetation¹ (Explain) 15 = Total Cover Woody Vine Stratum ¹Indicators of hydric soil and wetland hydrology must be present. 1. 2. = Total Cover Hydrophytic Vegetation \boxtimes Present? Yes No % Bare Ground in Herb Stratum % Cover of Biotic Crust Remarks:

	Matrix			Redox F	eatures			
nches)	Color (moist)	%	Color (Mo	oist) %	Type ¹	Loc ²	Texture	Remarks
0-17	7.5 YR 4/3	100					Silty sand	d Refusal at 17" (gravel).
- ype: C= C	oncentration, D=Deple	tion, RM=F	Reduced Matr	ix, ² Location: PL=	-Pore Lining, R(C=Root Channe	el, M=Matrix.	
ydric Soil	Indicators: (Applicat	le to all LF	Rs, unless o		-			ators for Problematic Hydric Soils ³ :
- Histos	ol (A1)			Sandy Redox (S	5)			1 cm Muck (A9) (LRR C)
Histic	Epipedon (A2)			Stripped Matrix (S6)			2 cm Muck (A10) (LRR B)
Black	Histic (A3)			Loamy Mucky Mi	ineral (F1)			Reduced Vertic (F18)
Hydrog	gen Sulfide (A4)			Loamy Gleyed M	latrix (F2)			Red Parent Material (TF2)
Stratifi	ied Layers (A5) (LRR (C)		Depleted Matrix	(F3)			Other (Explain in Remarks)
] 1 cm M	Muck (A9) (LRR D)			Redox Dark Surf	ace (F6)			
Deplet	ted Below Dark Surfac	e (A11)		Depleted Dark S	urface (F7)			
_	Dark Surface (A12)			Redox Depression	ons (F8)			
Thick I	Mucky Mineral (S1)			Vernal Pools (F9))		³ Indic	ators of hydrophytic vegetation and wetland
							hydro	logy must be present.
Sandy	Gleyed Matrix (S4)							
☐ Sandy ☐ Sandy	Gleyed Matrix (S4) Layer (if present):							
☐ Sandy ☐ Sandy								

Wetla	and Hydrology Indicat	tors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	nore requi	ed)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2	!)				Biotic Crust (B12)		\boxtimes	Sediment Deposits (B	2) (Riveri r	ie)		
	Saturation (A3)					Aquatic Invertebrates (B13)		\boxtimes	Drift Deposits (B3) (Ri	verine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B1	0)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Roo	ts (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverir	ıe)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
\boxtimes	Surface Soil Cracks (I	B6)				Recent Iron Reduction in Tilled Soils (C6)		Crayfish Burrows (C8)				
	• • • • • • • •					Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	jery (C	9)	
									Shallow Aquitard (D3)				
	water-Stained Leaves (B9)								FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes	\boxtimes	No	
Desc	ribe Recorded Data (st	tream gai	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avail	lable:						
Rema	arks:												

Project Site:	Lake Pov	well Pip	oeline – Paria Ri	ver, S	outh Side	Ci	ty/County	<u>':</u>	Kane		Sampling D	ate:	7/24	/09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					State	: UT	Sampling P	oint:	Soil	Pit #2	2
Investigator(s):	C. Jones	, B. Lir	ning, E. Zimmer	man		Sectio	on, Towns	ship, Ran	ge:	T43S R1W S	34				
Landform (hillslope, te	rrace, etc.): F	Riparian area			Local relief	(concave	e, convex	, none)	: None		Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		37.10723112	Lon	g:		-111.90	70378	Datum:		WGS 8	4	
Soil Map Unit Name:	Green F	River-R	adnik, moist-Su	wanee	e, saline complex	, 0 to 5 perc	ent slope	S		NWI cla	ssification:	Not map	oped		
Are climatic / hydrolog	ic conditio	ns on t	he site typical fo	or this	time of year?	Yes	\boxtimes	No		lf no, explain	in Remarks.)				
Are Vegetation ,	Soil	□,	Or Hydrology	□,	significantly dist	urbed?	Are "No	rmal Circ	cumstar	nces" presen	t?	Yes	\boxtimes	No	
Are Vegetation ,	Soil	□,	Or Hydrology	□,	naturally probler	matic?	(If need	ed, expla	in any	answers in R	emarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes		No	\boxtimes				
Remarks: Soil pit is on west terrace adjacent to channel	el.							

VEGETATION								
Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:				
 Tamarix ramosissima 2. 	75	Y	FACW	Number of Dominant Species OBL, FACW, or FAC:	That Are	1		(A)
3. 4.				Total Number of Dominant Spe All Strata:	ecies Across	1		(B)
Sapling/Shrub Stratum	75	= Total Cove	er	Percent of Dominant Species T OBL, FACW, or FAC:	That Are	1 00 %		(A/B)
1.				Prevalence Index worksheet:	:			
2.				Total %Cover of :		Multipl	<u>y by:</u>	
3.				OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
		= Total Cove	er	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1.				Column Totals:	(A)			(B)
2.				Prevalence	Index = B/A =	=		
3.				Hydrophytic Vegetation India	ators:			
4.				Dominance Test is	>50%			
5.				Prevalence Index is	s <u><</u> 3.0 ¹			
6.				Morphological Ada			orting da	ita in
7.				Remarks or on a se	eparate sheet)		
8.				Problematic Hydror	ohytic Vegeta	tion ¹ (Exp	olain)	
		= Total Cove	er					
Woody Vine Stratum								
1.				¹ Indicators of hydric soil and w	etland hydrold	ogy must	be prese	nt.
2.								
		= Total Cove	er	Hydrophytic Vegetation				
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes	\boxtimes	No	
Remarks:								

SOI	L										Sampli	ng Poin	t: Soil P	it #2	
Prof	ile Desci	ription: (Describe to	the depth	needed to d	locument	the indica	tor or conf	irm the absence	e of indicato	ors.)					
C	epth	Matrix				Redox Fe	atures								
(incl	nes)	Color (moist)	%	Color (Mo	oist)	%	Type ¹	Loc ²	Texture				Remar	ks	
()-12	5 YR 4/4	100						Silty san	d					
1	2-18	7.5 YR 4/3	100						Clayey sa	ind	Slightly c	layey			
	e [.] C – Co	ncentration, D=Depl	ation RM-	Reduced Mat	rix ² loc:	ation: PI -P		PC-Root Chann	ol M-Matrix						
		ndicators: (Applical					ore Lining,				for Probl	ematic	Hydric	Soils ³	
	Histoso					Redox (S5)					m Muck (A			50115 .	
		pipedon (A2)				d Matrix (Se					m Muck (A				
		listic (A3)				Mucky Mine	,				duced Ver	<i>,</i> .			
		en Sulfide (A4)				Gleyed Mat	. ,				d Parent N				
	, ,	. ,	C)	_			. ,		_				. ,		
		d Layers (A5) (LRR	C)			ed Matrix (F	,			Otr	ner (Explaii	n in Rer	narks)		
		luck (A9) (LRR D)	<i></i>			Dark Surfac	()								
		ed Below Dark Surfac	ce (A11)			d Dark Sur	. ,								
		ark Surface (A12)				Depression	s (F8)								
		Mucky Mineral (S1)			Vernal	Pools (F9)			³ Indic	ators	of hydrop	hytic ve	getatior	and we	tland
	Sandy	Gleyed Matrix (S4)							hydro	logy	must be pi	resent.			
Rest	rictive L	ayer (if present):													
Туре	e:														
Dept	h (Inches	s):						Hydric Soils F	Present?			Yes		No	\boxtimes
Rem	arks:	Soil type is mapped	as partially	hydric.											

Wetl	and Hydrology Indicat	ors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	more requii	ed)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riverin	e)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	verine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B1	0)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverir	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
	Surface Soil Cracks (I	36)				Recent Iron Reduction in Tilled Soils (C6))		Crayfish Burrows (C8))			
	••••					Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	ery (C	9)	
	••••								Shallow Aquitard (D3)				
	Water-Stained Leaves (B9)								FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetlar	nd Hy	drology Present?	Yes		No	\boxtimes
Desc	ribe Recorded Data (st	iream gau	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if availa	able:						
Rem	arks:												

Project Site:	Lake Pov	well Pip	eline – Johnsor	wash	I.	Cit	y/County	:	Kan	ie	Sampling D	ate:	7/24	/09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					Stat	te: UT	Sampling P	oint:	Soil	Pit #1	I
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sectio	n, Towns	hip, Rar	ige:	T43S R4	.5W S30				
Landform (hillslope, ter	race, etc.): R	Riparian area		L	ocal relief	(concave	, conve	k, non	e): Non	e	Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		37.03731549	Long	g:		-112.3	3561994	Datum:		WGS 8	34	
Soil Map Unit Name:	Not ma	pped								NWI	classification:	Not ma	pped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, exp	lain in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distur	rbed?	Are "Nor	mal Ciro	cumst	ances" pre	sent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	atic?	(If neede	ed, expla	ain an	y answers	in Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	\boxtimes	No					
Remarks: Soil pit is on west terrace adjacent to channel	•							

VEGETATION

	Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:				
1. 2.					Number of Dominant Species T OBL, FACW, or FAC:	hat Are	1		(A)
3. 4.					Total Number of Dominant Spec All Strata:	cies Across	1		(B)
	g/Shrub Stratum		= Total Cove	ər	Percent of Dominant Species T OBL, FACW, or FAC:	hat Are	100%		(A/B)
1.					Prevalence Index worksheet:				
2.					Total %Cover of :		Multipl	<u>y by:</u>	
3.					OBL species		x1 =		
4.					FACW species		x2 =		
5.					FAC species		x3 =		
			= Total Cove	er	FACU species		x4 =		
Herb	Stratum				UPL species		x5 =		
1.	Xanthium strumarium	5	Y	FAC	Column Totals:	(A)			(B)
2.	Salsola kali	<1	N	FACU	Prevalence I	ndex = B/A	=		
З.	Hordeum jubatum	<1	N	FAC*	Hydrophytic Vegetation Indic	ators:			
4.	Melilotus officianalis	<1	N	FACU	Dominance Test is :	>50%			
5.					Prevalence Index is	<u><</u> 3.0 ¹			
6. 7.					Morphological Adap Remarks or on a se			porting da	ata in
8.					Problematic Hydrop	hytic Vegeta	ation ¹ (Exr	olain)	
		5+	= Total Cove	er	i robomato riyurop	,			
Wood	y Vine Stratum								
1.					¹ Indicators of hydric soil and we	etland hydrol	ogy must	be prese	nt.
2.									
			= Total Cove	er	Hydrophytic Vegetation		_		_
% Ba	e Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes	\boxtimes	No	
Rema	rks:								

SOIL Sampling Point: Soil Pit #1 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) Type¹ (inches) % Texture Remarks Clay 5 YR 4/2 100 0-18 No redox features. ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: \boxtimes Depth (Inches): Hydric Soils Present? Yes No Remarks: Soil type is mapped as partially hydric. Slightly damp at ~2" below ground surface.

Wetla	and Hydrology Indica	tors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or i	more requi	red)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2	2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	ıe)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (R	iverine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B	10)			
	Sediment Deposits (E	82) (Nonr	iverine)		Oxidized Rhizospheres along Living R	oots (C3)	Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverir	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	:7)			
\boxtimes	Surface Soil Cracks (B6)				Recent Iron Reduction in Tilled Soils (C6)		Crayfish Burrows (C8))			
	Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9)					Other (Explain in Remarks)			Saturation Visible on	Aerial Imag	jery (C	:9)	
	Water-Stained Leaves (B9)								Shallow Aquitard (D3))			
	Water-Stained Leaves (B9)								FAC-Neutral Test (D5	5)			
Field	d Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	We	tland Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (s	tream ga	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if av	vailable:						
Rema	arks:												

Project Site:	Lake Pov	vell Pip	eline – Johnson	wash	I.	Cit	y/County:	:	Kar	ie	Sampling D	ate:	7/24	/09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					Sta	te: UT	Sampling Po	oint:	Soil	Pit #2	2
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmeri	man		Sectio	n, Towns	hip, Rar	nge:	T43S R4.5	W S30				
Landform (hillslope, ter	race, etc.): R	Riparian area		L	ocal relief	(concave	, conve	k, non	e): None		Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		37.03726182	Long	g:		-112.3	3562495	Datum:		WGS 8	4	
Soil Map Unit Name:	Not ma	pped								NWI o	classification:	Not ma	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, expla	in in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distur	bed?	Are "Nor	mal Cir	cumst	ances" prese	ent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problema	atic?	(If neede	ed, expla	ain an	y answers in	Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes		No	\boxtimes						
Hydric Soil Present?			No	\boxtimes	Is the Sampling Area within a Wetland?	Yes		No	\boxtimes	
Wetland Hydrology Present?	Yes		No	\boxtimes						
Remarks: Soil pit is on west terrace adjacent to channel.										

VEGETATION										
Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant <u>Species?</u>	Indicator <u>Status</u>	Dominance Test Worksheet:						
1. Tamarix ramosissima	10	Y	FACW	Number of Dominant Species That Are	1	(A)				
2. Salix laevigata	15	Y	UPL	OBL, FACW, or FAC:	•	(A)				
3. 4.				Total Number of Dominant Species Acro All Strata:	^{DSS} 3	(B)				
Sapling/Shrub Stratum	25	= Total Cove	er	Percent of Dominant Species That Are OBL, FACW, or FAC:	33%	(A/B)				
1. Tamarix ramosissima				Prevalence Index worksheet:						
2.				Total %Cover of :	Multiply by:					
3.				OBL species	x1 =					
4.				FACW species	x2 =					
5.				FAC species	x3 =					
		= Total Cove	er	FACU species	x4 =					
Herb Stratum				UPL species	x5 =					
1. Kochia scoparia	15	Y	FACU	Column Totals:	(A)	(B)				
2. Salsola kali	<1	Ν	FACU	Prevalence Index = B/A =						
3.				Hydrophytic Vegetation Indicators:						
4.				Dominance Test is >50%						
5.				Prevalence Index is <u><</u> 3.0 ¹						
6. 7.				Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)						
8.				Problematic Hydrophytic Ve	getation ¹ (Explain)					
	15+	= Total Cove	er							
Woody Vine Stratum										
1.				¹ Indicators of hydric soil and wetland hy	drology must be pre	esent.				
2.										
		= Total Cove	er	Hydrophytic Vegetation						
% Bare Ground in Herb Stratum	% Cover of Biotic Crust			Present? Yes	No No					
Remarks:					· ·	·				

VECETATION

SOIL Sampling Point: Soil Pit #2 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) Type¹ Texture (inches) % Remarks 0-14 5 YR 4/2 100 Silty clay No redox features. 14-18 7.5 YR 4/3 100 Clayey sis No redox features. ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Sandy Redox (S5) Histosol (A1) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: \boxtimes Depth (Inches): Hydric Soils Present? Yes No Remarks: Soil type is mapped as partially hydric. Slightly damp at ~2" below ground surface.

Wetland Hydrology Indicators:														
Primary Indicators (any one indicator is sufficient)							Secondary Indicators (2 or more required)							
Surface Water (A1)				Salt Crust (B11)			Water Marks (B1) (Riverine)							
High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B2) (Riverine)							
Saturation (A3)				Aquatic Invertebrates (B13)			Drift Deposits (B3) (Riverine)							
Water Marks (B1) (Nonriverine)				Hydrogen Sulfide Odor (C1)			Drainage Patterns (B10)							
Sediment Deposits (B2) (Nonriverine)				Oxidized Rhizospheres along Living Roots (C3)			Dry-Season Water Table (C2)							
Drift Deposits (B3) (Nonriverine)				Presence of Reduced Iron (C4)			Thin Muck Surface (C7)							
Surface Soil Cracks (B6)				Recent Iron Reduction in Tilled Soils (C6)			Crayfish Burrows (C8)							
Inundation Visible on Aerial Imagery (B7)				Other (Explain in Remarks)			Saturation Visible on Aerial Imagery (C9)							
Water-Stained Leaves (B9)							Shallow Aquitard (D3)							
									FAC-Neutral Test (D5)				
Field Observations:														
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):								
Water Table Present? Yes D No		\boxtimes	Depth (inches):											
Saturation Present? Yes D No (includes capillary fringe)		\boxtimes	Depth (inches):	Depth (inches): Wetland Hydrology Present		drology Present?	Yes		No					
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:														
Remarks:														

Project Site:	Lake Pov	vell Pip	oeline – Kanab C	Creek a	at Fredonia	Cit	ty/County:	:	Moł	nave	Sampling D	ate:	7/23	09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					Stat	te: AZ	Sampling Po	oint:	Soil	Pit #1	
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmeri	man		Sectio	n, Towns	hip, Rar	ige:	T41N R2W	S8				
Landform (hillslope, ter	race, etc.): R	Riparian area		I	Local relief	(concave	, conve	k, non	e): None		Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		36.96187872	Lon	g:		-112.5	5301521	Datum:		WGS 8	4	
Soil Map Unit Name:	Glenyo	n silty o	clay loam, 0 to 2	perce	nt slopes					NWI cl	assification:	Not map	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, explai	n in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	rbed?	Are "Nor	rmal Ciro	cumsta	ances" prese	nt?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	atic?	(If neede	ed, expla	ain ang	y answers in	Remarks.)				

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	\boxtimes	No					
Remarks: Soil pit is in channel (no surface water).								

VEGETATION Absolute Dominant Indicator Tree Stratum (Use scientific names.) **Dominance Test Worksheet:** % Cover Species? Status 1. Populus fremontii 2 Y FACW Number of Dominant Species That Are 3 (A) OBL, FACW, or FAC: 2. 3. Total Number of Dominant Species Across 4 (B) All Strata: 4. 2 = Total Cover Percent of Dominant Species That Are 75% (A/B) OBL, FACW, or FAC: Sapling/Shrub Stratum 1. Salix exigua 75 Υ OBL Prevalence Index worksheet: FACW-2. Elaeagnus angustifolia 5 Ν Total %Cover of : Multiply by: 3. **OBL** species x1 = FACW species 4. x2 = 5. FAC species x3 = 80 = Total Cover FACU species x4 = UPL species Herb Stratum x5 = 1. Xanthium strumarium (B) 5 Υ NI (A) Column Totals: 2 Y FACW+ 2. Polypogon monospeliensis Prevalence Index = B/A = 3. Rumex crispus Ν FACW Hydrophytic Vegetation Indicators: 1 4. Hordeum jubatum Ν FACW-Dominance Test is >50% 1 5. Bromus japonicas 1 Ν FACU Prevalence Index is <3.01 6. Melilotus officianalis Ν FACU+ 1 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 7. 8. Problematic Hydrophytic Vegetation¹ (Explain) 11 = Total Cover Woody Vine Stratum ¹Indicators of hydric soil and wetland hydrology must be present. 1. 2. = Total Cover Hydrophytic Vegetation Present? Yes \boxtimes No % Bare Ground in Herb Stratum % Cover of Biotic Crust Remarks:

SOIL Sampling Point: Soil Pit #1 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) % Type¹ (inches) Texture Remarks 7.5 YR 6/4 100 Dry to bottom of pit. 0-18 Sandy si ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Sandy Redox (S5) Histosol (A1) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Vernal Pools (F9) Sandy Mucky Mineral (S1) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: Hydric Soils Present? \boxtimes Depth (Inches): Yes No Remarks: Mapped as non-hydric soil.

Wetland Hydrology Indi	cators:											
Primary Indicators (any o	ne indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	more requii	red)		
Surface Water (A1)			\boxtimes	Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
High Water Table	(A2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riverin	ie)		
Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	verine)			
Water Marks (B1)	(Nonriverin	ie)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B1	0)			
Sediment Deposits	; (B2) (Non r	riverine)		Oxidized Rhizospheres along Living Roo	ots (C3)		Dry-Season Water Ta	ble (C2)			
Drift Deposits (B3)	(Nonriveri	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
Surface Soil Crack	s (B6)				Recent Iron Reduction in Tilled Soils (C6	5)		Crayfish Burrows (C8))			
Inundation Visible	on Aerial Im	agery (B7)		Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	jery (C	9)	
Water-Stained Lea	ves (B9)							Shallow Aquitard (D3)				
								FAC-Neutral Test (D5)			
Field Observations:												
Surface Water Present?	Yes		No	\boxtimes	Depth (inches):							
Water Table Present?	Yes		No	\boxtimes	Depth (inches):							
Saturation Present? (includes capillary fringe)	Yes	\boxtimes	No		Depth (inches):	Wetlar	nd Hy	drology Present?	Yes		No	
Describe Recorded Data	(stream ga	uge, mo	onitoring	g well,	aerial photos, previous inspections), if avail	lable:						
Remarks:												

Project Site:	Lake Pov	well Pip	eline – Kanab C	Creek a	at Fredonia	Cit	ty/County	:	Mol	nave	Sampling	Date:	7/23	/09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					Sta	te: A	Z Sampling	Point:	Soil	Pit #2	2
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmeri	man		Sectio	on, Towns	hip, Rar	ige:	T41N R2	2W S8				
Landform (hillslope, ter	race, etc.): R	liparian area			Local relief	(concave	, conve	k, non	e): Nor	ne	Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		36.82572822	Lon	g:		-112.	5970343	Datum:		WGS 8	4	
Soil Map Unit Name:	Glenyo	n silty o	clay loam, 0 to 2	perce	nt slopes					NW	I classification:	Not ma	pped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, exp	plain in Remarks.)			
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	urbed?	Are "Nor	rmal Ciro	cumst	ances" pre	esent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	natic?	(If neede	ed, expla	ain an	y answers	in Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present?	Yes Yes		\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	Ø
Wetland Hydrology Present?	Yes	No	\boxtimes				
Remarks: Soil pit is on riparian shelf.							

VEGETATION								
Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet	:			
1. Tamarix ramosissima	20	Υ	NI	Number of Dominant Species	That Are	1		(A)
2. Salix exigua	5	Ν	OBL	OBL, FACW, or FAC:		•		(~)
3. Elaeagnus angustifolia	5	Ν	FACW-	Total Number of Dominant Sp	ecies Across	4		(B)
4. Populus fremontii	2	Ν	FACW	All Strata:		-		(D)
Sapling/Shrub Stratum	32	= Total Cov	er	Percent of Dominant Species OBL, FACW, or FAC:	That Are	25%		(A/B
1. Salix exigua	15	Y	OBL	Prevalence Index workshee	t:			
2.				Total %Cover of		Multipl	y by:	
3.				OBL species	-	x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
	15	= Total Cov	er	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1. Cynodon dactylon	2	Y	FACU	Column Totals:	(A)			(B)
2. Salsola kali	2	Y	FACU	Prevalence	e Index = B/A	=		
3.				Hydrophytic Vegetation Indi	cators:			
4.				Dominance Test is	s >50%			
5.				Prevalence Index	is <u><</u> 3.0 ¹			
6. 7.				Morphological Ada Remarks or on a s			oorting da	ita in
8.				Droblematic Lludre	-	otion ¹ (Eur	lain)	
5.	4	= Total Cov	er	Problematic Hydro	phytic veget	ation (Exp	biain)	
Woody Vine Stratum	·	- 10101 001						
1.				¹ Indicators of hydric soil and v	vetland hydro	logy must	be prese	nt.
2.								
		= Total Cov	er	Hydrophytic Vegetation				
% Bare Ground in Herb Stratum	% Cover of Biot			Present?	Yes		No	\boxtimes
Remarks:	I		1	_	I	I	I	I
Romano.								

VECETATION

SOIL Sampling Point: Soil Pit #2 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) % Type¹ (inches) Texture Remarks Sic 7.5 YR 5/4 100 Dry to bottom of pit. 0-18 ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Sandy Redox (S5) Histosol (A1) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Vernal Pools (F9) Sandy Mucky Mineral (S1) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: Hydric Soils Present? \boxtimes Depth (Inches): Yes No Remarks: Mapped as non-hydric soil.

Wetla	and Hydrology Indica	tors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	more requii	red)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2	2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riverin	ıe)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	iverine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B1	10)			
	Sediment Deposits (E	32) (Nonr	iverine)		Oxidized Rhizospheres along Living Roc	ots (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverir	ıe)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
	Surface Soil Cracks (B6)				Recent Iron Reduction in Tilled Soils (C6	5)		Crayfish Burrows (C8))			
						Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	jery (C	9)	
	Water-Stained Leave	s (B9)							Shallow Aquitard (D3)	1			
									FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	\boxtimes
Desc	ribe Recorded Data (s	tream gau	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avai	ilable:						
Rema	arks:												

Project Site:	Lake Pov	well Pip	eline – Cottonw	ood Ci	reek	Cit	ty/County	:	Moł	nave	Sampling Da	ate:	7/23	/09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					Stat	te: AZ	Sampling Po	oint:	Soil	Pit #1	
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sectio	on, Towns	hip, Rar	ige:	T41N R3	W S25				
Landform (hillslope, ter	race, etc.): R	Riparian area		I	Local relief	(concave	, conve	k, non	e): Non	е	Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		36.92879606	Lon	g:		-112.5	5639803	Datum:		WGS 8	4	
Soil Map Unit Name:	Sheppa	ard fine	sand, 1 to 7 per	cent s	lopes					NWI	classification:	Not ma	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, exp	lain in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	rbed?	Are "No	rmal Ciro	cumst	ances" pres	sent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	natic?	(If neede	ed, expla	ain an	y answers	in Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No	\boxtimes				
Hydric Soil Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	No	\boxtimes				
Remarks: Soil pit is in channel (no surface water).							

Tree :	Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:							
1. 2.					Number of Dominant Species T OBL, FACW, or FAC:	hat Are	0		(A)			
3. 4.					Total Number of Dominant Spe All Strata:	cies Across	3		(B)			
	ng/Shrub Stratum		= Total Cove	er	Percent of Dominant Species T OBL, FACW, or FAC:	hat Are	0%		(A/B)			
1.	Tamarix ramosissima	20	Y	NI	Prevalence Index worksheet:							
2.	Chrysothamnus viscida	5	N	UPL	Total %Cover of :		Multipl	<u>y by:</u>				
З.					OBL species		x1 =					
4.					FACW species		x2 =					
5.					FAC species		x3 =					
		25	= Total Cove	er	FACU species x4 =							
Herb	<u>Stratum</u>				UPL species x5 =							
1.	Salsola kali	2	Y	FACU								
2.	Bromus tectorum	2	Y	UPL	Prevalence	Index = B/A	=					
3.	Cucurbita palmata	<1	N	UPL	Hydrophytic Vegetation Indic	ators:						
4.	Carduus nutans	<1	N	UPL	Dominance Test is	>50%						
5.					Prevalence Index is	s <3.0 ¹						
6. 7.					Morphological Adap Remarks or on a se			porting da	ita in			
8.					Problematic Hydrop	hytic Veget	ation ¹ (Exp	olain)				
		4	= Total Cove	er		, ,	· ·	,				
Wood	y Vine Stratum											
1.					¹ Indicators of hydric soil and we	etland hydro	logy must	be prese	nt.			
2.												
		er	Hydrophytic Vegetation									
% Ba	re Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes		No	\boxtimes			
Rema	irks:				_							

SOIL Sampling Point: Soil Pit #1 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) Type¹ (inches) % Texture Remarks 5 YR 3/4 100 Dry to bottom of pit. 0-18 Sandy csi ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Sandy Redox (S5) Histosol (A1) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Vernal Pools (F9) Sandy Mucky Mineral (S1) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: Hydric Soils Present? \boxtimes Depth (Inches): Yes No Remarks: Mapped as non-hydric soil.

Wetland Hydrology Indic	ators:											
Primary Indicators (any on	e indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	more requi	red)		
Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
High Water Table (A	1 2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	ie)		
Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	iverine)			
Water Marks (B1) (I	lonriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B1	10)			
Sediment Deposits	(B2) (Nonr	iverine	;)		Oxidized Rhizospheres along Living Roo	ots (C3)		Dry-Season Water Ta	ble (C2)			
Drift Deposits (B3) (Nonriverir	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
Surface Soil Cracks	(B6)				Recent Iron Reduction in Tilled Soils (C6	6)		Crayfish Burrows (C8))			
Inundation Visible o	n Aerial Im	agery (B7)		Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	ery (C	9)	
Water-Stained Leav	es (B9)							Shallow Aquitard (D3)	1			
								FAC-Neutral Test (D5)			
Field Observations:												
Surface Water Present?	Yes		No	\boxtimes	Depth (inches):							
Water Table Present?	Yes		No	\boxtimes	Depth (inches):							
Saturation Present? (includes capillary fringe)	Yes		No		Depth (inches):	Wetlar	nd Hy	drology Present?	Yes		No	
Describe Recorded Data	stream ga	uge, mo	onitoring	g well,	aerial photos, previous inspections), if avail	lable:						
Remarks:												

Project Site:	Lake Pov	well Pip	eline – Cottonw	ood C	reek	C	ity/County	:	Mol	have		Sampling Da	ate:	7/23/	09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					Sta	te:	AZ	Sampling Po	pint:	Soil I	Pit #2	
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Section	on, Towns	ship, Rar	nge:	T41N	I R3W S2	5				
Landform (hillslope, ter	race, etc.): R	Riparian area			Local relief	f (concave	e, conve	k, non	e):	None		Slope	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		36.9287527	Lon	ig:		-112.	56392		Datum:	Ň	NGS 8	4	
Soil Map Unit Name:	Sheppa	ard fine	sand, 1 to 7 per	cent s	lopes						NWI class	sification:	Not map	ped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	time of year?	Yes	\boxtimes	No		(If no,	explain ir	n Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly dist	turbed?	Are "No	rmal Ciro	cumst	ances"	present?		Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally proble	matic?	(If need	ed, expla	ain an	y answ	ers in Re	marks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No	\boxtimes				
Hydric Soil Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	No	\boxtimes				
Remarks: Soil pit is in channel (no surface water).							

VEG	ETATION									
Tree	Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:					
1. 2.	Tamarix ramosissima	85	Y	NI	Number of Dominant Species T OBL, FACW, or FAC:	That Are	0		(A)	
3. 4.					Total Number of Dominant Spe All Strata:	cies Across	2		(B)	
<u>Saplir</u>	ng/Shrub Stratum		= Total Cove	er	Percent of Dominant Species T OBL, FACW, or FAC:	hat Are	0%		(A/B)	
1.	Tamarix ramosissima	80	Y	NI	Prevalence Index worksheet:					
2.	Chrysothamnus viscida	5	N	UPL	Total %Cover of :		Multipl	<u>y by:</u>		
3.					OBL species		x1 =			
4.					FACW species		x2 =			
5.					FAC species		x3 =			
		85	= Total Cove	er	FACU species		x4 =			
Herb	Stratum				UPL species		x5 =			
1.					Column Totals: (A)					
2.					Prevalence	Index = B/A =	=			
3.					Hydrophytic Vegetation Indic	ators:				
4.					Dominance Test is	>50%				
5.					Prevalence Index is	s <u><</u> 3.0 ¹				
6. 7.					Morphological Adap Remarks or on a se			orting da	ta in	
8.								1.1.1		
			= Total Cove	er	Problematic Hydrop	onytic vegeta	tion" (Exp	lain)		
	y Vine Stratum				¹ Indicators of hydric soil and we	tional hydrol		ha araaa	-	
1.						eliano nyorolo	ogy musi	be prese	nı.	
2.										
		1	= Total Cove	er	Hydrophytic Vegetation Present?	Vaa		Na		
% Ba	e Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes		No		
Rema	rks:									

SOIL Sampling Point: Soil Pit #2 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) % Type¹ (inches) Texture Remarks 2.5 YR 4/4 100 0-4 Sand 4-18 2.5 YR 3/4 100 sclsi Dry to bottom of pit. ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Sandy Redox (S5) Histosol (A1) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Vernal Pools (F9) Sandy Mucky Mineral (S1) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: Hydric Soils Present? \boxtimes Depth (Inches): Yes No Remarks: Mapped as non-hydric soil.

HYD	ROLOGY												
Wet	and Hydrology Indica	tors:											
Prim	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or	more requi	red)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Ri	verine)			
	High Water Table (A2	2)				Biotic Crust (B12)			Sediment Deposits (B	32) (Riveri r	ie)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (R	iverine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B	10)			
	Sediment Deposits (E	32) (Nonr	iverine	;)		Oxidized Rhizospheres along Living Roots	s (C3)		Dry-Season Water Ta	able (C2)			
	Drift Deposits (B3) (N	onriverin	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	;7)			
	Surface Soil Cracks (B6)				Recent Iron Reduction in Tilled Soils (C6)	1		Crayfish Burrows (C8)			
	Inundation Visible on	Aerial Im	agery (B7)		Other (Explain in Remarks)			Saturation Visible on	Aerial Imag	ery (C	9)	
	Water-Stained Leave	s (B9)							Shallow Aquitard (D3))			
									FAC-Neutral Test (D5	5)			
Field	Observations:												
Surfa	ace Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	er Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? udes capillary fringe)	Yes		No		Depth (inches):	Wetlar	nd Hy	drology Present?	Yes		No	
Desc	cribe Recorded Data (s	tream ga	uge, mo	onitoring	g well,	aerial photos, previous inspections), if availa	able:						
Rem	arks:												

Project Site:	Lake Pov	well Pip	peline – Two Mile	e Wasl	n	С	ity/County	<u>/:</u>	Moh	ave	S	ampling Da	ite:	7/23	09	
Applicant/Owner:	Utah Div	ision of	f Water Resourc	es					Stat	e: A	z s	ampling Po	int:	Soil	Pit #1	
Investigator(s):	C. Jones	, B. Lir	ning, E. Zimmer	man		Secti	on, Towns	ship, Rar	ige:	T40N R	4W S14					
Landform (hillslope, ter	rrace, etc.): F	Riparian area			Local relie	f (concave	e, conve	k, none	e): No	ne		Slope	e (%):	0	
Subregion (LRR):	Interior	Deser	ts Lat:		36.86708841	Lor	ng:		-112.6	972362	Da	atum:	١	NGS 8	4	
Soil Map Unit Name:	Mido Io	amy fir	ne sand, 1 to 4 p	ercent	slopes, gullied					NV	VI classifi	ication:	Not map	ped		
Are climatic / hydrologi	c conditio	ns on t	the site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, ex	plain in F	Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	irbed?	Are "No	rmal Ciro	cumsta	ances" pr	esent?		Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	natic?	(If need	ed, expla	ain any	answers	s in Rema	arks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes		No	\boxtimes				
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	\boxtimes	No					
Remarks: Soil pit is in channel (no surface water).								

Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:							
1. 2.				Number of Dominant Species Tha OBL, FACW, or FAC:	at Are	0		(A)			
3. 4.				Total Number of Dominant Specie All Strata:	es Across	1		(B)			
Sapling/Shrub Stratum		= Total Cove	er	Percent of Dominant Species That OBL, FACW, or FAC:	at Are	0%		(A/B)			
1.				Prevalence Index worksheet:							
2.				Total %Cover of :		Multipl	<u>y by:</u>				
3.				OBL species		x1 =					
4.				FACW species		x2 =					
5.				FAC species		x3 =					
		= Total Cove	er	FACU species		x4 =					
Herb Stratum				UPL species		x5 =					
1. Salsola kali	5	Y	FACU	CU Column Totals: (A) (B							
2. Polypogon monospeliensis	2	N	FACW+								
3. Bromus tectorum	1	N	UPL	Hydrophytic Vegetation Indicate	ors:						
4.				Dominance Test is >50	50%						
5.				Prevalence Index is <3	:3.0 ¹						
6. 7.				Morphological Adaptat Remarks or on a sepa			oorting da	ata in			
8.				Problematic Hydrophy	vtic Vegeta	tion ¹ (Exr	lain)				
	8	= Total Cove	er	i robiomatio riyarophy	, lio Vogola		Janiy				
Woody Vine Stratum											
1.				¹ Indicators of hydric soil and wetla	and hydrolo	ogy must	be prese	nt.			
2.											
		= Total Cove	er	Hydrophytic Vegetation							
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust			Yes		No	\boxtimes			
Remarks:	•		•	<u> </u>			•	•			

SOIL Sampling Point: Soil Pit #1 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) % Type¹ (inches) Texture Remarks 5 YR 5/6 100 Silty sand Damp below 2", no redox features. 0-18 ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Sandy Redox (S5) Histosol (A1) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Vernal Pools (F9) Sandy Mucky Mineral (S1) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: Hydric Soils Present? \boxtimes Depth (Inches): Yes No Remarks: Mapped as non-hydric soil.

Wetl	and Hydrology Indicat												
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	nore requir	ed)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riverin	e)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	verine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B1	0)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Tal	ble (C2)			
\boxtimes	Drift Deposits (B3) (N	onriverir	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
\boxtimes	Surface Soil Cracks (I	36)				Recent Iron Reduction in Tilled Soils (C6))		Crayfish Burrows (C8)				
	Inundation Visible on	Aerial Im	agery (l	B7)		Other (Explain in Remarks)			Saturation Visible on A	erial Imag	ery (C	9)	
									Shallow Aquitard (D3)				
									FAC-Neutral Test (D5))			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes	\boxtimes	No	
Desc	ribe Recorded Data (st	ream gau	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avail	able:						
Rem	arks:												

Project Site:	Lake Pov	well Pip	peline – Two Mil	e Wasł	ı	Ci	ty/County	:	Moh	nave	Sampling D	ate:	7/23	09	
Applicant/Owner:	Utah Divi	ision of	f Water Resourc	es					Stat	e: AZ	Sampling P	oint:	Soil	Pit #2	2
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sectio	on, Towns	hip, Ran	ge:	T40N R4W	S14				
Landform (hillslope, ter	race, etc.): F	Riparian area		l	_ocal relief	(concave	, convex	, non	e): None		Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	is Lat:		36.86708453	Lon	g:		-112.6	6972878	Datum:		WGS 8	4	
Soil Map Unit Name:	Mido lo:	amy fir	ne sand, 1 to 4 p	ercent	slopes, gullied					NWI c	lassification:	Not ma	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, expla	in in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	rbed?	Are "No	rmal Circ	cumsta	ances" prese	ent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	atic?	(If neede	ed, expla	in any	y answers in	Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No	\boxtimes				
Hydric Soil Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	No	\boxtimes				
Remarks: Soil pit is on riparian shelf, ~3' higher than	SP1.						

	Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:				
1. 2.					Number of Dominant Species Th OBL, FACW, or FAC:	nat Are	1		(A)
3. 4.					Total Number of Dominant Spec All Strata:	ies Across	4		(B)
	ng/Shrub Stratum		= Total Cov	er	Percent of Dominant Species Th OBL, FACW, or FAC:	nat Are	25%		(A/B)
1.	Tamarix ramosissima	40	Y	NI	Prevalence Index worksheet:				
2.	Chrysothamnus viscidflorus	20	Ν	UPL	Total %Cover of :		Multipl	y by:	
3.					OBL species		x1 =		
4.					FACW species		x2 =		
5.					FAC species		x3 =		
		60	= Total Cove	er	FACU species		x4 =		
<u>Herb</u>	Stratum				UPL species		x5 =		
1.	Salsola kali	2	Y	FACU	Column Totals:	(A)			(B)
2.	Sisymbrium altissimum	2	Y	FAC	Prevalence Ir	ndex = B/A =	=		
3.	Cynodon dactylon	2	Y	FACU	Hydrophytic Vegetation Indica	ators:			
4.					Dominance Test is >	50%			
5.					Prevalence Index is	<u><</u> 3.0 ¹			
6. 7.					Morphological Adapt Remarks or on a sep	ations ¹ (Pro parate sheet	vide supp :)	oorting da	ata in
8.					Problematic Hydroph	ovtic Vegeta	tion ¹ (Exr	olain)	
		6	= Total Cove	er		,		,	
Wood	ly Vine Stratum								
1.					¹ Indicators of hydric soil and wet	land hydrolo	ogy must	be prese	nt.
2.									
			= Total Cove	er	Hydrophytic Vegetation		_		-
% Ba	re Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes		No	
Rema	irks:								

SOIL Sampling Point: Soil Pit #2 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) % Type¹ (inches) Texture Remarks 5 YR 4/6 100 Silty clay Dry to bottom, no redox features. 0-18 ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Sandy Redox (S5) Histosol (A1) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Vernal Pools (F9) Sandy Mucky Mineral (S1) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: Hydric Soils Present? \boxtimes Depth (Inches): Yes No Remarks: Mapped as non-hydric soil.

Wetl	and Hydrology Indicat	ors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or n	nore requii	ed)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B2	2) (Riverin	ie)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	verine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B1	0)			
	Sediment Deposits (B	2) (Nonr	iverine	;)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Tal	ole (C2)			
\boxtimes	Drift Deposits (B3) (N	onriverir	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
						Recent Iron Reduction in Tilled Soils (C6))		Crayfish Burrows (C8)				
						Other (Explain in Remarks)			Saturation Visible on A	erial Imag	jery (C	9)	
	••••								Shallow Aquitard (D3)				
									FAC-Neutral Test (D5))			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (st	ream gau	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avail	able:						
Rem	arks:												

Project Site:	Lake Pov	vell Pip	oeline – Kanab C	Creek a	at Jacob Canyon	C	ity/County	:	Mol	nave	Sampling D	ate:	7/23	/09	
Applicant/Owner:	Utah Divi	ision of	f Water Resourc	es					Sta	te: AZ	Sampling P	oint:	Soil	Pit #1	
Investigator(s):	C. Jones	, B. Lir	ning, E. Zimmer	man		Section	on, Towns	hip, Rar	nge:	T40N R3W	S34				
Landform (hillslope, ter	race, etc.): F	Riparian area			Local relief	f (concave	, conve	k, non	e): None		Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	ts Lat:		36.82561231	Lon	ig:		-112.	5969999	Datum:		WGS 8	4	
Soil Map Unit Name:	Torriort	hents-l	Rock outcrop co	mplex,	warm, 30 to 70 p	percent slop	bes			NWI c	assification:	Not map	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, explai	n in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly dist	urbed?	Are "No	rmal Cire	cumst	ances" prese	nt?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally probler	natic?	(If neede	ed, expla	ain an	y answers in	Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present?	Yes Yes		No No	\boxtimes	Is the Sampling Area within a Wetland?	Yes		No					
Wetland Hydrology Present?	Yes	\boxtimes	No										
Remarks: Soil pit is in channel (no surface water in this area, some ponding upstream).													

<u>% Cover</u>	Species?	<u>Status</u>					
			Number of Dominant Species OBL, FACW, or FAC:	That Are	1		(A)
			Total Number of Dominant Spe All Strata:	ecies Across	3		(B)
	= Total Cove	er	Percent of Dominant Species OBL, FACW, or FAC:	That Are	33%		(A/B)
2	Y	OBL	Prevalence Index worksheet	:			
2	Y	NI	Total %Cover of :		Multipl	v by:	
			OBL species		x1 =		
			FACW species		x2 =		
			FAC species		x3 =		
4	= Total Cove	er	FACU species		x4 =		
			UPL species		x5 =		
2	Y	NI	Column Totals:	(A)			(B)
<1	Ν	FACU	Prevalence	Index = B/A	=		
<1	Ν	UPL	Hydrophytic Vegetation Indi	cators:			
<1	Ν	FAC	Dominance Test is	s >50%			
<1	Ν	FAC-	Prevalence Index i	s <u><</u> 3.0 ¹			
						oorting da	ıta in
			Droblomatia Hudro	phytic Vogota	tion ¹ (Evr	oloin)	
2+	= Total Cove	er	Fibblematic Hydro	priytic vegeta		Janij	
			¹ Indicators of hydric soil and w	etland hydrol	ogy must	be prese	nt.
	= Total Cove	ər	Hydrophytic Vegetation				
% Cover of Biot	tic Crust		Present?	Yes		No	
			-			Ĩ	
	2 4 2 <1 <1 <1 <1 2+	2 Y 2 Y 4 = Total Cove 2 Y <1	2 Y NI 4 = Total Cover 2 Y NI <1 N FACU <1 N FAC <1 N FAC <1 N FAC <1 N FAC <1 N FAC <1 N FAC	All Strata: = Total Cover 2 Y 2 Y 2 Y 2 Y 2 Y 1 N 4 = Total Cover 4 = Total Cover 4 = Total Cover 4 = Total Cover 5 FACW species 6 FACU species 1 N 5 FACU 2 Y 1 N 5 FACU species 1 N 5 FACU 1 N 5 FACU 1 N 5 FACU 5 Prevalence 6 Prevalence 1 N 5 FAC 6 Prevalence Index i 1 N 6 Problematic Hydro 2+ = Total Cover <t< td=""><td>= Total Cover Percent of Dominant Species That Are OBL, FACW, or FAC: 2 Y OBL 2 Y NI 3 Total Cover FACW species 4 = Total Cover FACU species 2 Y NI Column Totals: (A) <1</td> N FAC <1</t<>	= Total Cover Percent of Dominant Species That Are OBL, FACW, or FAC: 2 Y OBL 2 Y NI 3 Total Cover FACW species 4 = Total Cover FACU species 2 Y NI Column Totals: (A) <1	All Strata: 3 all Strata: Percent of Dominant Species That Are OBL, FACW, or FAC: 33% 2 Y OBL 2 Y NI Call Species X1 = FACW species X2 = FACW species X3 = FACU species X3 = FACU species X4 = UPL species X5 = 2 Y NI <1	All Strata: 3 = Total Cover Percent of Dominant Species That Are OBL, FACW, or FAC: 33% 2 Y OBL 2 Y OBL 2 Y NI Column Totals: x1 = FACU species x4 = UPL species x4 = UPL species x4 = UPL species x5 = Column Totals: (A) <1

Depth	Matrix		, u 10 u	ocumen	Redox Fe		irm the absence		013.)					
(inches)		% Co	lor (Mo	nist)	%	Type ¹	Loc ²	 Texture				Remar	ks	
0-18		00				Турс		Clay grav		Damp to s	surface		NO	
0.10	01111	00						Oldy gray	VCI	Dump to t	Junaco	•		
¹ Type: C=	Concentration, D=Depletion	. RM=Reduce	ed Matr	ix. ² Loc	ation: PL=P	ore Linina.	RC=Root Chann	el. M=Matrix	κ.					
	il Indicators: (Applicable t									or Proble	ematic	Hydric	Soils ³ :	
•	osol (A1)	,			, Redox (S5)				1 cm	Muck (A	9) (LRI	R C)		
☐ Histie	c Epipedon (A2)			Strippe	d Matrix (Se	6)			2 cm	Muck (A	10) (LF	RRB)		
Black	k Histic (A3)			Loamy	Mucky Mine	eral (F1)			Redu	uced Vert	ic (F18)		
□ Hydr	ogen Sulfide (A4)			Loamy	Gleyed Mat	trix (F2)			Red	Parent M	aterial	(TF2)		
□ Strat	ified Layers (A5) (LRR C)			Deplete	ed Matrix (F	3)			Othe	r (Explair	in Rei	marks)		
□ 1 cm	Muck (A9) (LRR D)			Redox	Dark Surfac	ce (F6)								
Depl	eted Below Dark Surface (A	.11)		Deplete	ed Dark Sur	face (F7)								
□ Thicł	k Dark Surface (A12)			Redox	Depression	s (F8)								
Sanc	dy Mucky Mineral (S1)			Vernal	Pools (F9)			³ India	cotore (of hydroph	ovtic vo	actation	and wo	fland
Sanc	dy Gleyed Matrix (S4)									iust be pr		getation		uanu
Restrictive	e Layer (if present):													
Туре:							Hydric Soils F	Present?			Yes		No	\boxtimes
Type: Depth (Incl	hes):													

Wetl	and Hydrology Indicat	ors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or i	more requii	ed)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riverin	e)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (R	iverine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B	10)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverir	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
\boxtimes	Surface Soil Cracks (B6)								Crayfish Burrows (C8))			
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)			Saturation Visible on	Aerial Imag	ery (C	9)	
	Water-Stained Leaves (B9)								Shallow Aquitard (D3))			
									FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? Ides capillary fringe)	Yes	\boxtimes	No		Depth (inches):	Wetlar	nd Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (st	iream gau	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if availa	able:						
Rem	Remarks:												

Project Site:	Lake Pov	well Pip	oeline – Kanab C	Creek a	at Jacob Canyon	С	ity/County	:	Mol	nave	Sampling Da	ate:	7/23	09	
Applicant/Owner:	Utah Divi	ision of	f Water Resourc	es					Sta	te: AZ	Sampling Po	oint:	Soil	Pit #2	2
Investigator(s):	C. Jones	, B. Lir	ning, E. Zimmer	man		Section	on, Towns	hip, Rar	nge:	T40N R3W	S34				
Landform (hillslope, ter	race, etc.): F	Riparian area			Local relie	f (concave	, conve	k, non	e): None		Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	ts Lat:		36.82572822	Lor	ig:		-112.	5970343	Datum:		WGS 8	4	
Soil Map Unit Name:	Torriort	hents-l	Rock outcrop co	mplex,	warm, 30 to 70 p	percent slop	bes			NWI cl	assification:	Not map	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, explai	n in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	urbed?	Are "No	rmal Cire	cumst	ances" prese	nt?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	natic?	(If neede	ed, expla	ain an	y answers in	Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present?	Yes Yes		No No	\boxtimes	Is the Sampling Area within a Wetland?	Yes		No	\boxtimes				
Wetland Hydrology Present?	Yes		No	\boxtimes									
Remarks: Soil pit is in channel (no surface water in this area, some ponding upstream).													

Tree S	Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:				
1. 2.					Number of Dominant Species T OBL, FACW, or FAC:	hat Are	1		(A)
3. 4.					Total Number of Dominant Spec All Strata:	cies Across	3		(B)
Saplir	g/Shrub Stratum		= Total Cove	r	Percent of Dominant Species T OBL, FACW, or FAC:	hat Are	33%		(A/B)
1.	Salix exigua	30	Y	OBL	Prevalence Index worksheet:				
2.	Tamarix ramosissima	30	Y	NI	Total %Cover of :		Multiply	<u>/ by:</u>	
3.	Chrysothamnus viscidiflorus	20	Ν	UPL	OBL species		x1 =		
4.					FACW species		x2 =		
5.					FAC species		x3 =		
		80	= Total Cove	r	FACU species		x4 =		
Herb :	Stratum				UPL species		x5 =		
1.	Bromus tectorum	5	Y	UPL	Column Totals:	(A)			(B)
2.					Prevalence I	ndex = B/A	=		
3.					Hydrophytic Vegetation Indica	ators:			
4.					Dominance Test is a	>50%			
5.					Prevalence Index is	<3.0 ¹			
6.					Morphological Adap	tations ¹ (Pro	ovide supp	ortina da	ta in
7.					Remarks or on a se			J	
8.					Problematic Hydrop	hytic Vegeta	ation ¹ (Exp	lain)	
		5	= Total Cove	r		, ,		,	
Wood	y Vine Stratum								
1.					¹ Indicators of hydric soil and we	tland hydrol	ogy must l	be prese	nt.
2.									
			= Total Cove	r	Hydrophytic Vegetation				_
% Baı	e Ground in Herb Stratum	% Cover of Biot	tic Crust		Present?	Yes		No	\boxtimes
Rema	rks:								

SOIL											Sam	oling Poi	nt: Soil F	Pit #2	
Profil	le Descri	iption: (Describe t	o the depth	needed to d	ocument			irm the absenc	e of indicato	rs.)					
De	epth	Matrix				Redox Fe			_						
(inche	es)	Color (moist)	%	Color (Mo	oist)	%	Type ¹	Loc ²	Texture	_			Rema	rks	
0-	-18	5 YR 4/4	100						Silty san	d	Uniforn	n color, r	io redox	features.	
1_					. 2.										
,1		centration, D=Dep	,		,		ore Lining,	RC=Root Chanr	,		for Pro	blematio	- Uvdric	Soils ³	
	Histosol					Redox (S5)						(A9) (LR		30115 .	
		pipedon (A2)				d Matrix (S6						(A9) (LK (A10) (L			
		stic (A3)				Mucky Mine	,					ertic (F18	,		
		en Sulfide (A4)			,	Gleyed Mat	()					Material	,		
	, ,	d Layers (A5) (LRR	C)			d Matrix (F	. ,		_			ain in Re	()		
		ick (A9) (LRR D)	0)		•	Dark Surfac	,			01			markoj		
		d Below Dark Surfa	ce (A11)			d Dark Sur	· · /								
		ark Surface (A12)				Depression	. ,								
		lucky Mineral (S1)				Pools (F9)	- ()		3						
		Bleyed Matrix (S4)				()						present.		n and we	tland
Restr	ictive La	ayer (if present):								0,		<u>.</u>			
Type:		· · · ·													
Depth	n (Inches)):						Hydric Soils	Present?			Yes		No	\boxtimes
Rema	arks: I	Mapped as non-hyd	dric soil.												

Wetl	and Hydrology Indicat	ors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or i	more requi	ed)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Ri	verine)			
	High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	e)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (R	iverine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B	10)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Roo	ots (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverir	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	:7)			
	Surface Soil Cracks (B6) Recent Iron Reduction in Tilled Soil								Crayfish Burrows (C8))			
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)			Saturation Visible on	Aerial Imag	ery (C	9)	
	Water-Stained Leaves (B9)								Shallow Aquitard (D3))			
									FAC-Neutral Test (D5	5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (st	tream ga	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avail	lable:						
Rem	arks:												

Project Site:	Lake Pov	well Pip	oeline – Bitter Se	eps W	/ash	Ci	ty/County	:	Mol	have		Sampling Da	ate:	7/22	/09	
Applicant/Owner:	Utah Divi	ision of	f Water Resourc	es					Sta	te:	AZ	Sampling Po	oint:	Soil	Pit #1	
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sectio	on, Towns	hip, Ran	ge:	T39N	R3W S6	5				
Landform (hillslope, ter	rrace, etc.): lı	n channel of was	sh		Local relief	(concave	, conve	, non	ie): n	on		Slope	e (%):	0	
Subregion (LRR):	Interior	Desert	ts Lat:		36.80926048	Lon	g:		-112.6	6520563	3	Datum:	١	NGS 8	4	
Soil Map Unit Name:	Pennell	gravel	lly loam, 1 to 12	percer	nt slopes					N	IWI clas	sification:	Not map	ped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(lf no, e	explain ir	n Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	rbed?	Are "No	rmal Circ	cumst	tances" p	present?	1	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	natic?	(If neede	ed, expla	in an	y answe	ers in Re	marks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No No No	X X X	Is the Sampling Area within a Wetland?	Yes	No	
Remarks:							

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:				
1.				Number of Dominant Species T	hat Are			(A)
2.				OBL, FACW, or FAC:				(,,)
3. 4.				Total Number of Dominant Spec	cies Across			(B)
		= Total Cover						
Sapling/Shrub Stratum				Percent of Dominant Species T OBL, FACW, or FAC:	hat Are	%		(A/B)
1.				Prevalence Index worksheet:				
2.				Total %Cover of :		Multiply	<u>/ by:</u>	
3.				OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
		= Total Cover	r	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1.				Column Totals:	(A)			(B)
2.				Prevalence I	ndex = B/A	=		
3.				Hydrophytic Vegetation Indic	ators:			
4.				Dominance Test is a	>50%			
5.				Prevalence Index is	<u><</u> 3.0 ¹			
6.				Morphological Adap			orting da	ta in
7.				Remarks or on a se	parate shee	:)		
8.				Problematic Hydrop	hytic Vegeta	tion ¹ (Exp	lain)	
		= Total Cover	r					
Woody Vine Stratum				4				
1.				¹ Indicators of hydric soil and we	tland hydrol	ogy must l	be prese	nt.
2.								
		= Total Cover	r	Hydrophytic Vegetation				
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes		No	\boxtimes
Remarks: No vegetation present in channel.								

Denth	scription: (Describe to the	depth needed to o			in the absence	e or indicator	5.)
Depth	Matrix			Features	. 2		
(inches)		% Color (M	loist) %	Type ¹	Loc ²	Texture	Remarks
0-18	5YR 6/4 1	00				Sand	No redox features
71	Concentration, D=Depletior	,		0 ,	C=Root Channe	,	
Hydric Soi	I Indicators: (Applicable t	o all LRRs, unless	otherwise noted.))		Indica	tors for Problematic Hydric Soils ³ :
Histor	sol (A1)		Sandy Redox (S	5)			1 cm Muck (A9) (LRR C)
Histic	c Epipedon (A2)		Stripped Matrix	(S6)			2 cm Muck (A10) (LRR B)
Black	(Histic (A3)		Loamy Mucky M	lineral (F1)			Reduced Vertic (F18)
Hydro	ogen Sulfide (A4)		Loamy Gleyed N	/latrix (F2)			Red Parent Material (TF2)
Strati	ified Layers (A5) (LRR C)		Depleted Matrix	(F3)			Other (Explain in Remarks)
🗌 1 cm	Muck (A9) (LRR D)		Redox Dark Sur	face (F6)			
Deple	eted Below Dark Surface (A	A11) 🗌	Depleted Dark S	Surface (F7)			
	Dark Surface (A12)		Redox Depressi	ons (F8)			
			Vernal Pools (F9	9)		3	ators of hydrophytic vegetation and wetland
Thick	ly Mucky Mineral (S1)					Indica	
Thick				,			ogy must be present.
☐ Thick ☐ Sand ☐ Sand	ly Mucky Mineral (S1)						
Thick	ly Mucky Mineral (S1) ly Gleyed Matrix (S4)			·			
☐ Thick ☐ Sand ☐ Sand Restrictive	ly Mucky Mineral (S1) ly Gleyed Matrix (S4) Layer (if present):				Hydric Soils P	hydrole	

Wetla	and Hydrology Indicat	ors:											
Prima	ary Indicators (any one i	indicator	is suffic	cient)				Sec	ondary Indicators (2 or m	nore requi	red)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2))				Biotic Crust (B12)			Sediment Deposits (B2	2) (Riverir	ie)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Riv	verine)			
	Water Marks (B1) (No	nriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B1	0)			
	Sediment Deposits (B	2) (Nonr i	iverine)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Tat	ole (C2)			
	Drift Deposits (B3) (No	onriverin	ıe)			Presence of Reduced Iron (C4)			Thin Muck Surface (C7	7)			
	Surface Soil Cracks (E	36)				Recent Iron Reduction in Tilled Soils (C6))		Crayfish Burrows (C8)				
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)			Saturation Visible on A	erial Imag	jery (C	9)	
	Water-Stained Leaves (B9)								Shallow Aquitard (D3)				
									FAC-Neutral Test (D5))			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)		No	\boxtimes	Depth (inches):	Wetlar	nd Hy	drology Present?	Yes		No		
Desc	ribe Recorded Data (st	ream gau	uge, mc	onitoring	g well, a	aerial photos, previous inspections), if avail	able:						
Rema	arks:												

Project Site:	Lake Pov	vell Pip	oeline – Bitter Se	eps W	/ash	Ci	ty/County	:	Mol	nave	Sampling Da	ate:	7/22	09	
Applicant/Owner:	Utah Divi	ision of	f Water Resourc	es					Sta	te: AZ	Sampling Po	oint:	Soil	Pit #2	2
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sectio	on, Towns	hip, Rar	ige:	T39N R3W	S6				
Landform (hillslope, ter	race, etc.): Ir	n channel of was	sh	I	Local relief	(concave	, conve	k, non	e): non		Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	ts Lat:		36.80922027	Lon	g:		-112.0	6520864	Datum:		WGS 8	4	
Soil Map Unit Name:	Pennell	gravel	lly loam, 1 to 12	percer	nt slopes					NWI cla	assification:	Not map	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, explain	n in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	rbed?	Are "No	rmal Ciro	cumst	ances" preser	nt?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	atic?	(If neede	ed, expla	ain an	y answers in I	Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present?	Yes Yes	No No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	No	\boxtimes				
Remarks:							

Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:				
<i>1.</i> 2.				Number of Dominant Species TI OBL, FACW, or FAC:	hat Are	0		(A)
3. 4.				Total Number of Dominant Spec All Strata:	cies Across	3		(B)
Sapling/Shrub Stratum		= Total Cove	er	Percent of Dominant Species Th OBL, FACW, or FAC:	nat Are	0%		(A/B)
1. Chrysothamnus spp.	25	Y	UPL	Prevalence Index worksheet:				
2. Tamarix ramosissima	20	Y	NI	Total %Cover of :		Multiply	<u>y by:</u>	
3. Artemisia filifolia	5	N	UPL	OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
	50	= Total Cove	er	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1. Bromus tectorum	2	Y	UPL	Column Totals:	(A)			(B)
2. Deschampsia sp.	1	N	FACW-	Prevalence li	ndex = B/A =	=		
3.				Hydrophytic Vegetation Indica	ators:			
4.				Dominance Test is >	>50%			
5.				Prevalence Index is	<3.0 ¹			
6.				Morphological Adapt	_	vide supp	ortina da	ata in
7.				Remarks or on a sep				
8.				Problematic Hydropl	hvtic Vegeta	tion ¹ (Exp	olain)	
	3	= Total Cove	er		,		,	
Woody Vine Stratum								
1.				¹ Indicators of hydric soil and we	tland hydrolo	ogy must	be prese	nt.
2.								
		= Total Cove	er	Hydrophytic Vegetation				
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes		No	\boxtimes
Remarks:								

SOIL Sampling Point: Soil Pit #2 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) % Type¹ (inches) Texture Remarks 5YR 5/6 100 Pit mostly dry (bottom slightly damp) 0-18 Sand ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils³: Sandy Redox (S5) Histosol (A1) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Vernal Pools (F9) Sandy Mucky Mineral (S1) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: Hydric Soils Present? \boxtimes Depth (Inches): Yes No Remarks: Mapped as non-hydric soil.

Wetla	and Hydrology Indica	tors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	more requi	red)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2	2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	ıe)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	iverine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B1	10)			
	Sediment Deposits (E	82) (Nonr	iverine)		Oxidized Rhizospheres along Living Ro	oots (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverin	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
	Surface Soil Cracks (B6)				Recent Iron Reduction in Tilled Soils (C	C6)		Crayfish Burrows (C8))			
	Inundation Visible on	Aerial Im	agery (B7)		Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	jery (C	9)	
	Water-Stained Leave	s (B9)							Shallow Aquitard (D3)	1			
									FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wet	land Hy	drology Present?	Yes		No	\boxtimes
Desc	ribe Recorded Data (s	tream ga	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if ava	ailable:						
Rema	arks:												

Project Site:	Lake Pov	well Pip	oeline – Two Mile	e Was	h at Mt. Trumbull Road	l Cit	y/County	:	Mol	have		Sampling Da	ate:	7/23/	09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					Sta	te:	AZ	Sampling Po	pint:	Soil I	Pit #1	
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmeri	man		Sectio	n, Towns	ship, Rar	nge:	T40N	R3W S1	9				
Landform (hillslope, ter	race, etc.): F	Riparian area		Loca	l relief	(concave	e, conve	k, non	ie): N	lone		Slope	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		36.84654675	Long	j :		-112.0	662730	9	Datum:	Ň	NGS 8	4	
Soil Map Unit Name:	Sheppa	ard loar	my fine sand, 1 t	o 4 pe	rcent slopes, gullied					١	WI clas	sification:	Not map	ped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year? Ye	es	\boxtimes	No		(If no, e	explain i	n Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly disturbed	?	Are "No	rmal Cir	cumst	ances"	present?		Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problematic?	•	(If need	ed, expla	ain an	y answe	ers in Re	emarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic V	Vegetation Present?	Yes	No	\boxtimes				
Hydric Soil Pr	resent?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydr	rology Present?	Yes	No	\boxtimes				
Remarks: S	Soil pit is in channel (no surface water).							

Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:				
1. 2.				Number of Dominant Species T OBL, FACW, or FAC:	hat Are	0		(A)
3. 4.				Total Number of Dominant Spec All Strata:	cies Across	1		(B)
Sapling/Shrub Stratum		= Total Cove	ər	Percent of Dominant Species T OBL, FACW, or FAC:	hat Are	0%		(A/B)
1.				Prevalence Index worksheet:				
2.				Total %Cover of :		Multipl	v by:	
3.				OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
		= Total Cove	er	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1. Salsola kali	2	Y	FACU	Column Totals:	(A)			(B)
2.				Prevalence I	ndex = B/A	=		
3.				Hydrophytic Vegetation Indic	ators:			
4.				Dominance Test is :	>50%			
5.				Prevalence Index is	<u><</u> 3.0 ¹			
6. 7.				Morphological Adap Remarks or on a se			oorting da	ıta in
8.							1.1.1	
0.	2	= Total Cove		Problematic Hydrop	nytic vegeta	ition" (Exp	plain)	
Woody Vine Stratum	2	- 101010000	51					
1.				¹ Indicators of hydric soil and we	tland hydrol	ogy must	be prese	nt.
2.								
		= Total Cove	er	Hydrophytic Vegetation				
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes		No	
Remarks:								

Depth Matrix Redox Features (inches) Color (moist) % Color (Moist) % Type ¹ Loc ² Texture Remar 0-12 7.5 YR 4/4 100 Sand Refusal at 12" (cobble). * ¹ Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ² Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Point Muck Narface (A12) Redox Depressions (F8)										-			
0-12 7.5 YR 4/4 100 Sand Refusal at 12" (cobble). Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ² Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) 1 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Redox Depressions (F8) Sand	Depth	Matrix				Redox Fea	atures						
Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ² Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Redox Depressions (F8) Strippent Surface (F8)	(inches)	Color (moist)	%	Color (Mo	oist)	%	Type ¹	Loc ²	Texture		Rema	rks	
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Redox Depressions (F8)	0-12	7.5 YR 4/4	100						Sand	Refusal at 12"	(cobble).		
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Redox Depressions (F8)													
Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Hedox Depressions (F8)	<i>·</i> ··	· ·			-		ore Lining,	RC=Root Chann	-	tors for Problemati	c Hydric	Soils ³ :	
Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Hed Nark Surface (A12) Thick Dark Surface (A12) Redox Depressions (F8) Hed Nark Surface (F7)	Histoso	ol (A1)			Sandy	Redox (S5)				1 cm Muck (A9) (LF	RR C)		
Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Redox Depressions (F8) Redox Depressions (F8)] Histic E	pipedon (A2)			Strippe	ed Matrix (S6)			2 cm Muck (A10) (L	.RR B)		
Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Edox Depressions (F8)	Black H	listic (A3)			Loamy	Mucky Mine	eral (F1)			Reduced Vertic (F1	8)		
1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8)] Hydrog	en Sulfide (A4)			Loamy	Gleyed Mat	rix (F2)			Red Parent Materia	l (TF2)		
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8)] Stratifie	ed Layers (A5) (LRR	C)		Deplet	ed Matrix (F3	3)			Other (Explain in R	emarks)		
Thick Dark Surface (A12) Redox Depressions (F8)] 1 cm N	luck (A9) (LRR D)			Redox	Dark Surfac	e (F6)						
] Deplete	ed Below Dark Surfac	ce (A11)		Deplet	ed Dark Surf	ace (F7)						
] Thick E	Oark Surface (A12)			Redox	Depressions	s (F8)						
Sandy Mucky Mineral (S1)	Sandy	Mucky Mineral (S1)			Vernal	Pools (F9)			³ Indica	ators of hydrophytic v	reaetation	n and we	tland
Sandy Gleyed Matrix (S4) hydrology must be present.] Sandy	Gleyed Matrix (S4)											
estrictive Layer (if present):	estrictive L	ayer (if present):											
ype:	ype:												
Depth (Inches): Hydric Soils Present? Yes	epth (Inche	s):						Hydric Soils F	Present?	Yes		No	\boxtimes

Wetla	and Hydrology Indicat	ors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	nore requi	red)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	ie)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	verine)			
	Water Marks (B1) (No	nriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B1	0)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (No	onriverir	ıe)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
	Surface Soil Cracks (B	36)				Recent Iron Reduction in Tilled Soils (C6))		Crayfish Burrows (C8)				
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	jery (C	9)	
	Water-Stained Leaves	s (B9)							Shallow Aquitard (D3)				
									FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (st	ream gau	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avail	able:						
Rem	arks:												

Project Site:	Lake Pov	well Pip	eline – Two Mile	e Wasl	n at Mt. Trumbull Ro	oad Cit	y/County:		Moh	ave	Sampling Da	ate:	7/23/	09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					State	e: AZ	Sampling Po	oint:	Soil F	Pit #2	
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sectio	n, Townsl	hip, Ran	nge:	T40N R3	W S19				
Landform (hillslope, ter	race, etc.): R	liparian area		Lo	cal relief	(concave	, conve>	k, none	e): Non	e	Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		36.84659683	Long	g:		-112.6	627376	Datum:		NGS 84	1	
Soil Map Unit Name:	Sheppa	ard loar	ny fine sand, 1 t	o 4 pe	rcent slopes, gullied	ł				NW	I classification:	Not map	ped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, exp	lain in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly disturb	ed?	Are "Nor	mal Circ	cumsta	ances" pre	sent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problema	tic?	(If neede	ed, expla	ain any	answers	in Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No	\boxtimes				
Hydric Soil Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	No	\boxtimes				
Remarks: Soil pit is in channel (no surface water).							

	Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:				
1. 2.					Number of Dominant Species T OBL, FACW, or FAC:	hat Are	0		(A)
3. 4.					Total Number of Dominant Spe All Strata:	cies Across	2		(B)
	ng/Shrub Stratum		= Total Cove	er	Percent of Dominant Species T OBL, FACW, or FAC:	hat Are	0%		(A/B)
1.	Tamarix ramosissima	20	Y	NI	Prevalence Index worksheet:				
2.	Chyrosothanmus viscidiflorus	4	N	UPL	Total %Cover of :		Multip	<u>y by:</u>	
3.	Chrysothanmus nauseosus	2	N	UPL	OBL species		x1 =		
4.					FACW species		x2 =		
5.					FAC species		x3 =		
		26	= Total Cove	er	FACU species		x4 =		
Herb	Stratum				UPL species		x5 =		
1.	Salsola kali	3	N	FACU	Column Totals:	(A)			(B)
2.	Cynodon dactylon	5	Y	FACU	Prevalence	Index = B/A :	=		
3.					Hydrophytic Vegetation Indic	ators:			
4.					Dominance Test is :	>50%			
5.					Prevalence Index is	< 3.0 ¹			
6. 7.					Morphological Adap Remarks or on a se	tations ¹ (Pro		oorting da	ata in
8.					Problematic Hydrop	hytic Vegeta	tion ¹ (Exr	olain)	
		8	= Total Cove	er		inylio vegete		Janny	
Wood	y Vine Stratum								
1.					¹ Indicators of hydric soil and we	etiand hydrol	ogy must	be prese	nt.
2.									
		1	= Total Cove	er	Hydrophytic Vegetation	N	_	N	
% Ba	re Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes		No	\boxtimes
Rema	ırks:								

SOIL									Sampling Point: Soil Pit #2	
Profile Desc	cription: (Describe to	o the depth	needed to d	ocumen	t the indicat	or or conf	irm the absenc	e of indicato	ors.)	
Depth	Matrix				Redox Fea			_		
(inches)	Color (moist)	%	Color (Mo	ist)	%	Type ¹	Loc ²	Texture	Remarks	
0-18	7.5 YR 4/4	100						Silty san	ıd	
Type: C= C	oncentration, D=Depl	etion, RM=I	Reduced Matr	ix, ² Loc	ation: PL=Pc	ore Lining,	RC=Root Chanr	el, M=Matrix		
ydric Soil	Indicators: (Applica	ble to all L	RRs, unless o	otherwis	e noted.)			Indic	ators for Problematic Hydric Soils ³ :	
Histos	ol (A1)			Sandy	Redox (S5)				1 cm Muck (A9) (LRR C)	
Histic	Epipedon (A2)			Strippe	ed Matrix (S6)			2 cm Muck (A10) (LRR B)	
Black	Histic (A3)			Loamy	Mucky Mine	ral (F1)			Reduced Vertic (F18)	
] Hydrog	gen Sulfide (A4)			Loamy	Gleyed Matr	rix (F2)			Red Parent Material (TF2)	
Stratifi	ed Layers (A5) (LRR	C)		Deplet	ed Matrix (F3	3)			Other (Explain in Remarks)	
] 1 cm N	/luck (A9) (LRR D)			Redox	Dark Surface	e (F6)		_		
Deplet	ed Below Dark Surfa	ce (A11)		Deplet	ed Dark Surf	ace (F7)				
Thick I	Dark Surface (A12)			Redox	Depressions	s (F8)				
] Sandy	Mucky Mineral (S1)			Vernal	Pools (F9)			³ India	ators of hydrophytic vegetation and w	otland
] Sandy	Gleyed Matrix (S4)								blogy must be present.	ellanu
Restrictive	Layer (if present):									
уре:										
Pepth (Inche	es):						Hydric Soils	Present?	Yes 🗌 No	\boxtimes
Remarks:	Mapped as non-hyd	lric soil.								

Wetl	and Hydrology Indicat	ors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	nore requir	ed)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riverin	e)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	verine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B1	0)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverir	ie)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
	Surface Soil Cracks (I	B6)				Recent Iron Reduction in Tilled Soils (C6))		Crayfish Burrows (C8)				
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	ery (C	9)	
	Water-Stained Leaves	s (B9)							Shallow Aquitard (D3)				
									FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetlar	nd Hy	drology Present?	Yes		No	\boxtimes
Desc	ribe Recorded Data (st	tream gai	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if availa	able:						
Rem	arks:												

Project Site:	Lake Pov	well Pip	peline – Short Cr	reek, C	Colorado City	C	ity/County	/:	Mol	nave	Samp	pling Da	ate:	7/22	/09	
Applicant/Owner:	Utah Div	ision of	f Water Resourc	es					Sta	te: A	Z Samp	pling Po	oint:	Soil	Pit #1	l
Investigator(s):	C. Jones	s, B. Lir	ning, E. Zimmer	man		Secti	ion, Towns	ship, Rar	nge:	T41N R	6W S6					
Landform (hillslope, ter	race, etc.	.): F	Riparian area			Local relie	ef (concave	e, conve	k, non	e): no	ne		Slop	e (%):	0	
Subregion (LRR):	Interior	Deser	ts Lat:		36.98820015	Loi	ng:		-112.9	9888278	Datum	n:		WGS 8	84	
Soil Map Unit Name:	Mido Io	amy fir	ne sand, 1 to 4 p	ercent	slopes, gullied					N١	VI classificati	ion:	Not map	oped		
Are climatic / hydrologi	c conditio	ons on t	he site typical fo	or this t	time of year?	Yes	\boxtimes	No		(If no, ex	plain in Rem	arks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	urbed?	Are "No	rmal Cir	cumst	ances" pi	resent?		Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problen	natic?	(If need	ed, expla	ain an	y answer	s in Remarks	s.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes		No	\boxtimes				
Remarks: Soil pit is in the lower riparian area adjace	nt to th	e stre	eam c	hanne	ગ.			

Tree	Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant <u>Species?</u>	Indicator <u>Status</u>	Dominance Test Worksheet				
1.	Elaeagnus angustifolia	30	Y	FACW-	Number of Dominant Species	That Are	2		(A)
2.	Salix exigua	30	Y	OBL	OBL, FACW, or FAC:		-		(,,,
3. 4.	Tamarix ramosissima	5	Ν	NI	Total Number of Dominant Sp All Strata:	ecies Across	3		(B)
Sanl	ing/Shrub Stratum	65	= Total Cove	er	Percent of Dominant Species OBL, FACW, or FAC:	That Are	66%		(A/E
<u>0 upi</u> 1.					Prevalence Index worksheet				
2.					Total %Cover of :		Multipl	v hv:	
3.					OBL species		x1 =	<u>, .,</u>	
4.					FACW species		x2 =		
5.					FAC species		x3 =		
			= Total Cove	er	FACU species		x4 =		
Herb	Stratum				UPL species		x5 =		
1.	Triticum aestivum	15	Y	UPL	Column Totals:	(A)			(B)
2.						Index = B/A	=		
3.					Hydrophytic Vegetation Indi	cators:			
4.					Dominance Test is	>50%			
5.					Prevalence Index	s <3.0 ¹			
6. 7.					Morphological Ada Remarks or on a s			oorting da	ata in
7. 8.							,		
0.			= Total Cove	er	Problematic Hydro	phytic Vegeta	ation' (Exp	olain)	
Woo	dy Vine Stratum								
1.					¹ Indicators of hydric soil and w	etland hydro	logy must	be prese	nt.
2.									
			= Total Cove	er	Hydrophytic Vegetation				
% Ba	are Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes	\boxtimes	No	
	arks: No vegetation present in channel				1	I	_	I	

0-18	Color (moist) 5YR 4/4	% 100	Color (Mo	oist)	%	Type ¹	Loc ²	Texture		Rema	rks	
0-18	5YR 4/4	100									-	
								Sand	Dry to bottom	of pit.		
	entration, D=Deple					ore Lining, F	RC=Root Channe		ators for Problema	tic Hvdrid	: Soils ³ :	
] Histosol (A					edox (S5)				1 cm Muck (A9) (L	•		
Histic Epip	edon (A2)				Matrix (S6)			2 cm Muck (A10)	LRR B)		
Black Histi	c (A3)			Loamy N	lucky Mine	ral (F1)			Reduced Vertic (F	18)		
] Hydrogen	Sulfide (A4)			Loamy G	leyed Matr	ix (F2)			Red Parent Mater	al (TF2)		
Stratified L	ayers (A5) (LRR	C)		Depleted	Matrix (F3	3)			Other (Explain in F	Remarks)		
] 1 cm Muck	(A9) (LRR D)			Redox D	ark Surface	e (F6)		_				
Depleted E	Below Dark Surfac	e (A11)		Depleted	Dark Surf	ace (F7)						
Thick Dark	Surface (A12)			Redox D	epressions	; (F8)						
Sandy Mu	cky Mineral (S1)			Vernal P	ools (F9)			³ Indic	ators of hydrophytic	vegetatio	n and wet	land
Sandy Gle	yed Matrix (S4)								logy must be preser			
Restrictive Laye	er (if present):											
ype:												
JF = -							Hydric Soils P	resent?	Yes		No	D

Wetla	and Hydrology Indicat	ors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or m	nore requi	red)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	erine)			
	High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B2	2) (Riveri r	ie)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Riv	verine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B1	0)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Roo	ots (C3)		Dry-Season Water Tab	ole (C2)			
	Drift Deposits (B3) (No	onriverir	ıe)			Presence of Reduced Iron (C4)			Thin Muck Surface (C7	7)			
	Surface Soil Cracks (B	36)				Recent Iron Reduction in Tilled Soils (C6	5)		Crayfish Burrows (C8)				
	Inundation Visible on	Aerial Im	agery (l	B7)		Other (Explain in Remarks)			Saturation Visible on A	erial Imag	ery (C	9)	
	Water-Stained Leaves	s (B9)							Shallow Aquitard (D3)				
									FAC-Neutral Test (D5)				
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (st	iream gai	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avail	lable:						
Rema	arks:												

Project Site:	Lake Pov	well Pip	peline – Short Ci	reek, C	Colorado City	Ci	ity/County	:	Mol	nave	Sampling Da	ate:	7/22	09	
Applicant/Owner:	Utah Divi	ision of	f Water Resourc	es					Sta	te: AZ	Sampling Po	oint:	Soil	Pit #2	2
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Section	on, Towns	ship, Rar	nge:	T41N R6W	S6				
Landform (hillslope, ter	race, etc.): F	Riparian area			Local relief	f (concave	e, conve	k, non	e): none		Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	ts Lat:		36.98833202	Lon	g:		-112.9	9888997	Datum:		WGS 8	4	
Soil Map Unit Name:	Mido lo:	amy fir	ne sand, 1 to 4 p	ercent	slopes, gullied					NWI cl	assification:	Not map	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	time of year?	Yes	\boxtimes	No		(If no, explain	n in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	urbed?	Are "No	rmal Cir	cumst	ances" preser	nt?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	natic?	(If need	ed, expla	ain an	y answers in I	Remarks.)				

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No	\boxtimes				
Hydric Soil Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	No	\boxtimes				
Remarks: Soil pit is in the upper riparian area.							

VEGETATION Absolute Dominant Indicator Tree Stratum (Use scientific names.) **Dominance Test Worksheet:** % Cover Status Species? 1. Elaeagnus angustifolia 30 Y FACW-Number of Dominant Species That Are 2 (A) OBL, FACW, or FAC: 2. Salix exigua 30 Y OBL 3. Tamarix ramosissima 5 Ν NI Total Number of Dominant Species Across 5 (B) All Strata: 4. 65 = Total Cover Percent of Dominant Species That Are 40% (A/B) OBL, FACW, or FAC: Sapling/Shrub Stratum 1. Prevalence Index worksheet: 2. Total %Cover of : Multiply by: 3. **OBL** species x1 = FACW species 4. x2 = 5. FAC species x3 = = Total Cover FACU species x4 = UPL species Herb Stratum x5 = 1. Bromus tectorum UPL (B) 10 Υ (A) Column Totals: 2. Bromus hordeaceus 5 Y UPL Prevalence Index = B/A = З. Salsola kali 5 Υ FACU Hydrophytic Vegetation Indicators: 4. Polanisia trachysperma 2 Ν UPL Dominance Test is >50% 5. Prevalence Index is <3.01 6. Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 7. 8. Problematic Hydrophytic Vegetation¹ (Explain) 22 = Total Cover Woody Vine Stratum ¹Indicators of hydric soil and wetland hydrology must be present. 1. 2. = Total Cover Hydrophytic Vegetation \boxtimes Present? Yes No % Bare Ground in Herb Stratum % Cover of Biotic Crust Remarks:

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix Redox Features (inches) Color (moist) % Color (Moist) % Type 1 Loc ² Texture Remarks 0-18 2.5YR 4/4 100 Sandy sit Dry to bottom of pit. Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ² Location: PL=Pore Lining, RC=Root Channel, M=Matrix. tydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ² : Histic Epipedon (A2) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Hydrogen Sulfide (A4) Loarny Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loarny Gleyed Matrix (F2) Other (Explain in Remarks) I orn Muck (A9) (LRR D) Redox Depressions (F8) Sandy Sulface (A11) Depleted Dark Surface (A12) Sandy Gleyed Matrix (S4) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. Restrictive Layer (if present): Ype: No No Remarks: Rendrix Mapped as non-hydric s	rofile Desc	ription: (Describe to	the depth	needed to do	cument	the indica	tor or confi	rm the absence	of indicato	rs)		-		'it #2	
Inches) Color (moist) % Color (Moist) % Type1 Loc2 Texture Remarks 0-18 2.5YR 4/4 100 00 Sandy silt Dry to bottom of pit. Type: C= Concentration, D=Depletion, RM=Reduced Matrix, 2Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Type1 Indicators for Problematic Hydric Soils3: tydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils3: Indicators for Problematic Hydric Soils3: Histosol (A1) Sandy Redox (S5) I orn Muck (A9) (LRR C) Stripped Matrix (S6) 2 orn Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Other (Explain in Remarks) 1 orn Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) I orn Muck (A9) (Lerg D) Pleted Dark Surface (F7) Thick Dark Surface (A11) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. Sandy Gleyed Matrix (S4) Hydric Soils Present? Yes No Xeintrice Si S			the depth	necuca to ac	Journenn					13.)					
0-18 2.5YR 4/4 100 Sandy silt Dry to bottom of pit. Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ² Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ : Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Gleyed Matrix (F2) Redvaced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Sandy Mucky Mineral (S1) Vermal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. Sandy Gleyed Matrix (S4) Vermal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present.			%	Color (Moi	st)			Loc ²	Texture				Remai	·ks	
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ : Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Gleyed Matrix (S4) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. testrictive Layer (if present): ype: Peth (Inches):	0-18	2.5YR 4/4	100	. <u> </u>	<u> </u>				Sandy si	lt	Dry to b	ottom of	pit.		
ydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ : Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Gleyed Matrix (S4) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. estrictive Layer (if present): ype: Hydric Soils Present? Yes No Xes															
ydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ : Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) 2 Sandy Mucky Mineral (S1) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. sandy Gleyed Matrix (S4) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. estrictive Layer (if present): ype: Hydric Soils Present? Yes No Xes															
ydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ : Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) 2 Sandy Mucky Mineral (S1) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. sandy Gleyed Matrix (S4) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. estrictive Layer (if present): ype: Hydric Soils Present? Yes No Xes															
ydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ : Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. estrictive Layer (if present): ype: Hydric Soils Present? Yes No Xes															
Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Fedox Depressions (F8) Sandy Gleyed Matrix (S4) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. estrictive Layer (if present): ype: Hydric Soils Present? Yes No Xes	ype: C= C	oncentration, D=Deple	tion, RM=F	Reduced Matri	x, ² Loca	tion: PL=P	ore Lining, F	RC=Root Channe	el, M=Matrix.						
Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Indicators of hydrophytic vegetation and wetland hydrology must be present. Sandy Mucky Mineral (S1) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present. estrictive Layer (if present): rpe: Hydric Soils Present? Yes No Xes	ydric Soil	Indicators: (Applicat	ole to all LF	RRs, unless o	therwise	noted.)			Indica	ators	for Prob	olematic	Hydric	Soils ³ :	
Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) Sandy Gleyed Matrix (S4) Vernal Pools (F9)	Histos	ol (A1)			Sandy F	Redox (S5)				1 cm	n Muck (A9) (LRI	R C)		
Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) Sandy Gleyed Matrix (S4) Vernal Pools (F9) Hydric Soils Present? Yes No X	Histic	Epipedon (A2)			Stripped	Matrix (Se	5)			2 cm	n Muck (A10) (LF	RR B)		
Stratified Layers (A5) (LRR C) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present.	Black	Histic (A3)			Loamy M	Mucky Mine	eral (F1)			Red	uced Ve	rtic (F18)		
1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) Sandy Gleyed Matrix (S4) Vernal Pools (F9) estrictive Layer (if present): /pe: epth (Inches): Hydric Soils Present?] Hydrog	gen Sulfide (A4)			Loamy (Gleyed Mat	rix (F2)			Red	Parent	Material	(TF2)		
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) Sandy Gleyed Matrix (S4) Vernal Pools (F9) estrictive Layer (if present): ype: epth (Inches): Hydric Soils Present? Yes No X] Stratifi	ed Layers (A5) (LRR	C)		Deplete	d Matrix (F	3)			Othe	er (Expla	in in Re	marks)		
Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) Sandy Gleyed Matrix (S4) Indicators of hydrophytic vegetation and wetland hydrology must be present. estrictive Layer (if present): uppe: upp] 1 cm N	/luck (A9) (LRR D)			Redox D	Dark Surfac	e (F6)		_						
Sandy Mucky Mineral (S1) Vernal Pools (F9) Sandy Gleyed Matrix (S4) 3Indicators of hydrophytic vegetation and wetland hydrology must be present. estrictive Layer (if present): ype: epth (Inches): Hydric Soils Present? Yes No X] Deplet	ed Below Dark Surfac	e (A11)		Deplete	d Dark Surl	face (F7)								
Sandy Gleyed Matrix (S4) Indicators of hydrophytic vegetation and wetland hydrology must be present. estrictive Layer (if present): ype: epth (Inches): Hydric Soils Present?] Thick I	Dark Surface (A12)			Redox D	Depression	s (F8)								
Sandy Gleyed Matrix (S4) hydrology must be present. estrictive Layer (if present): ype: epth (Inches): Hydric Soils Present? Yes No Xo] Sandy	Mucky Mineral (S1)			Vernal F	Pools (F9)			³ India	atore	of bydro	obytic ve	actation		tland
ype: epth (Inches): Hydric Soils Present? Yes No] Sandy	Gleyed Matrix (S4)											gelalioi		lanu
epth (Inches): Hydric Soils Present? Yes No	estrictive	Layer (if present):													
	ype:														
emarks: Mapped as non-hydric soil.	epth (Inche	es):						Hydric Soils P	resent?			Yes		No	\boxtimes
	omarke:	Mapped as non-hydr	ic soil.												
	emains.														

Wetla	and Hydrology Indicat	tors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	more requi	ed)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	/erine)			
	High Water Table (A2	!)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	ie)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	verine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B1	0)			
	Sediment Deposits (E	82) (Nonr	iverine)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverir	ıe)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
	Surface Soil Cracks (B6)				Recent Iron Reduction in Tilled Soils (C6))		Crayfish Burrows (C8))			
	Inundation Visible on Aerial Imagery (B7)					Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	jery (C	9)	
	Water-Stained Leaves	s (B9)							Shallow Aquitard (D3)				
	Water-Stained Leaves (B9)								FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetlan	d Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (s	tream gai	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if availa	able:						
Rema	arks:												

Project Site:	Lake Pov	vell Pip	oeline – Short Cr	eek, E	ast Canaan Gap	Cit	ty/County	:	Wa	shington	Sampling D	ate:	7/22	/09	
Applicant/Owner:	Utah Divi	ision of	f Water Resourc	es					Sta	te: UT	Sampling P	oint:	Soil	Pit #1	l
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sectio	n, Towns	hip, Rar	ige:	T43S R11	V S30				
Landform (hillslope, ter	race, etc.): R	Riparian area		L	_ocal relief	(concave	, conve	, non	e): none		Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	ts Lat:		37.01062384	Long	g:		-113.	1125926	Datum:		WGS 8	34	
Soil Map Unit Name:	Naplen	e silt lo	am, 2 to 6 perce	ent slop	bes					NWI d	lassification:	Not map	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	time of year?	Yes	\boxtimes	No		(If no, expla	in in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	rbed?	Are "Nor	rmal Ciro	cumst	ances" prese	ent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	atic?	(If neede	ed, expla	ain an	y answers ir	Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes		No	\boxtimes							
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes		No	\boxtimes		
Wetland Hydrology Present?	Yes	\boxtimes	No								
Remarks: Soil pit is in the lower riparian area adjacent to the stream channel.											

Tree	Stratum (Use scientific names.)		Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Workshee	t:				
1.	Elaeagnus angustifolia		10	N	FAC	Number of Dominant Species	That Are	40		(•)	
2.	Salix exigua		10	Ν	OBL	OBL, FACW, or FAC:		10		(A)	
3.	Tamarix ramosissima		25	Υ	FACW	Total Number of Dominant S	pecies Across	2		(P)	
4.	Populus fremontii		20	Υ	FACW*	All Strata:		2		(B)	
Sapl	ing/Shrub Stratum		65	= Total Cov	er	Percent of Dominant Species OBL, FACW, or FAC:	That Are	20%		(A/	
1.						Prevalence Index workshee	et:				
2.						Total %Cover of	<u>:</u>	Multip	l <u>y by:</u>		
3.						OBL species		x1 =			
4.						FACW species		x2 =			
5.						FAC species		x3 =			
				= Total Cov	er	FACU species		x4 =			
lerb	Stratum					UPL species		x5 =			
1.	Carduus nutans		2	Y	UPL	PL Column Totals: (A)					
2.	Salsola kali		2	Y	FACU	Prevalenc	e Index = B/A	. =			
3.	Bromus tectorum		1	Y	UPL	Hydrophytic Vegetation Ind	licators:				
4.	Chrysothamnus nauseosus		1	Y	UPL	Dominance Test	is >50%				
5.	Polanisia trachysperma		1	Y	UPL	Prevalence Index	is <u><</u> 3.0 ¹				
6. 7.	Datura stramonium		1	Y	UPL	Morphological Ad Remarks or on a			porting da	ata in	
8.						Problematic Hydr	ophytic Veget	ation ¹ (Exp	olain)		
			8	= Total Cov	er				,		
<u>Woo</u> 1.	dy Vine Stratum					¹ Indicators of hydric soil and	wetland hydro	ology must	be prese	nt.	
2.											
				= Total Cov	er	Hydrophytic Vegetation					
% Ba	are Ground in Herb Stratum		% Cover of Bio	tic Crust		Present?	Yes		No		
Rem	arks:	I				-	I	1			

Depth nches) C 0-18	Matrix olor (moist) 5YR 5/6	% 100	Color (Mo	ist)	Redox Fea	atures Type ¹	Loc ²	Texture	Remarks					
<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>		Color (Mo	ist)	%	Type ¹	Loc ²	Texture	Remarks					
0-18	5YR 5/6	100												
								Fs	Uniform color, dry to bottom					
Histosol (A1)			Sandy	Redox (S5)				1 cm Muck (A9) (LRR C)					
Histic Epipe	don (A2)			Strippe	d Matrix (S6))			2 cm Muck (A10) (LRR B)					
Black Histic	(A3)			Loamy	Mucky Mine	ral (F1)			Reduced Vertic (F18)					
Hydrogen S	ulfide (A4)			Loamy	Gleyed Matr	rix (F2)			Red Parent Material (TF2)					
Stratified La	ayers (A5) (LRR (C)		Deplete	ed Matrix (F3	3)			Other (Explain in Remarks)					
1 cm Muck	(A9) (LRR D)			Redox	Dark Surface	e (F6)								
Depleted Be	elow Dark Surfac	e (A11)		Deplete	ed Dark Surfa	ace (F7)								
Thick Dark	Surface (A12)			Redox	Depressions	s (F8)								
Sandy Muck	ky Mineral (S1)			Vernal	Pools (F9)			³ Indic	ators of hydrophytic vegetation and wetland					
Sandy Gley	ed Matrix (S4)							hydro	logy must be present.					
	(if present):													
estrictive Layer	•••													
estrictive Layer														

Wetla	and Hydrology Indicat	ors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	more requi	red)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	ie)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	iverine)			
\boxtimes	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B1	10)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Ta	ble (C2)			
\boxtimes	Drift Deposits (B3) (N	onriverir	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
	Surface Soil Cracks (I	B6)				Recent Iron Reduction in Tilled Soils (C6))		Crayfish Burrows (C8))			
	Inundation Visible on Aerial Imagery (B7)					Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	jery (C	9)	
	Water-Stained Leaves	s (B9)							Shallow Aquitard (D3)	1			
	Water-Stained Leaves (B9)								FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetlan	d Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (st	tream gai	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if availa	able:						
Rema	arks:												

Project Site:	Lake Pov	well Pip	peline – Short Cr	reek, E	ast Canaan Gap	Ci	ty/County	:	Wa	shington		Sampling Da	ate:	7/22/	09	
Applicant/Owner:	Utah Divi	ision of	f Water Resourc	es					Sta	te: I	JT	Sampling Po	oint:	Soil	Pit #2	2
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sectio	on, Towns	hip, Rar	nge:	T43S F	R11W S3	30				
Landform (hillslope, ter	race, etc.): F	Riparian area		I	Local relief	(concave	, conve	k, non	ie): no	one		Slope	e (%):	0	
Subregion (LRR):	Interior	Desert	ts Lat:		37.01062384	Lon	g:		-113.	1125926	[Datum:	١	WGS 8	4	
Soil Map Unit Name:	Naplen	e silt lo	am, 2 to 6 perce	ent slop	pes					N	WI class	ification:	Not map	ped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	time of year?	Yes	\boxtimes	No		(If no, e	xplain in	Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distu	rbed?	Are "Noi	rmal Ciro	cumst	ances" p	resent?		Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problem	atic?	(If neede	ed, expla	ain an	y answei	rs in Rer	marks.)				

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes		No	\boxtimes				
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	\boxtimes	No					
Remarks: Soil pit is on upper riparian shelf								

VEGETATION Absolute Dominant Indicator Tree Stratum (Use scientific names.) **Dominance Test Worksheet:** % Cover Species? Status 1. Elaeagnus angustifolia 10 Ν FAC Number of Dominant Species That Are 8 (A) OBL, FACW, or FAC: 10 Ν OBL 2. Salix exigua Tamarix ramosissima 25 Y FACW 3. Total Number of Dominant Species Across 3 (B) All Strata: 4. Populus fremontii 20 Υ FACW* = Total Cover 65 Percent of Dominant Species That Are 38% (A/B) OBL, FACW, or FAC: Sapling/Shrub Stratum 1. Prevalence Index worksheet: 2. Total %Cover of : Multiply by: 3. **OBL** species x1 = FACW species 4. x2 = 5. FAC species x3 = = Total Cover FACU species x4 = UPL species Herb Stratum x5 = OBL (B) 1. Bidens cernua 1 Υ (A) Column Totals: Y FACU 2 Salsola kali 4 Prevalence Index = B/A = 3. Bromus tectorum Υ UPL Hydrophytic Vegetation Indicators: 1 4. Chrysothamnus nauseosus 1 Υ UPL Dominance Test is >50% 5. Polanisia trachysperma 1 Y UPL Prevalence Index is <3.01 6. Datura stramonium 1 Υ UPL Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 7. 8. Problematic Hydrophytic Vegetation¹ (Explain) 9 = Total Cover Woody Vine Stratum ¹Indicators of hydric soil and wetland hydrology must be present. 1. 2. = Total Cover Hydrophytic Vegetation \boxtimes Present? Yes No % Bare Ground in Herb Stratum % Cover of Biotic Crust Remarks:

	Matrix				Redox Feature	S							
nches)	Color (moist)	%	Color (Mo	oist)	% T	ype ¹	Loc ²	Texture	Remarks				
0-18	5YR 5/6	100						Fs	Uniform color, dry to bottom				
¹ Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ² Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ : Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C)													
Histos	ol (A1)			Sandy	Redox (S5)				1 cm Muck (A9) (LRR C)				
Histic	Epipedon (A2)			Strippe	d Matrix (S6)				2 cm Muck (A10) (LRR B)				
Black	Histic (A3)			Loamy	Mucky Mineral (F	F1)			Reduced Vertic (F18)				
Hvdro	gen Sulfide (A4)			Loamy	Gleyed Matrix (F	2)			Red Parent Material (TF2)				
			_	Donlat	ed Matrix (F3)								
	ied Layers (A5) (LRR C)			Depiet	eu Matrix (FS)				Other (Explain in Remarks)				
Stratif	ied Layers (A5) (LRR C) Muck (A9) (LRR D)			•	Dark Surface (F6	6)			Other (Explain in Remarks)				
Stratifi 1 cm I			_	Redox	. ,	,			Otner (Explain in Remarks)				
Stratifi 1 cm I Deple	Muck (A9) (LRR D)			Redox Deplet	Dark Surface (F6	(F7)			Otner (Explain in Remarks)				
Stratifi 1 cm I Deple Thick	Muck (A9) (LRR D) ted Below Dark Surface			Redox Deplet Redox	Dark Surface (F6 ed Dark Surface ((F7)							
Stratifi 1 cm I Deple Thick Sandy	Muck (A9) (LRR D) ted Below Dark Surface Dark Surface (A12)			Redox Deplet Redox	Dark Surface (F6 ed Dark Surface (Depressions (F8	(F7)			other (Explain in Remarks) ators of hydrophytic vegetation and wetland logy must be present.				
Stratifi 1 cm I Deple Thick Sandy Sandy	Muck (A9) (LRR D) ted Below Dark Surface Dark Surface (A12) Mucky Mineral (S1)			Redox Deplet Redox	Dark Surface (F6 ed Dark Surface (Depressions (F8	(F7)			ators of hydrophytic vegetation and wetland				
Stratifi 1 cm I Deple Thick Sandy Sandy	Muck (A9) (LRR D) ted Below Dark Surface Dark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4)			Redox Deplet Redox	Dark Surface (F6 ed Dark Surface (Depressions (F8	(F7)			ators of hydrophytic vegetation and wetland				

Wetla	and Hydrology Indicat	ors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	more requi	red)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	ie)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	iverine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B1	10)			
	Sediment Deposits (B	2) (Nonr	iverine)		Oxidized Rhizospheres along Living Roc	ots (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverir	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
	Surface Soil Cracks (I	B6)				Recent Iron Reduction in Tilled Soils (C6	6)		Crayfish Burrows (C8))			
	Inundation Visible on Aerial Imagery (B7)					Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	jery (C	9)	
	Water-Stained Leaves	s (B9)							Shallow Aquitard (D3))			
									FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (st	tream gai	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avai	lable:						
Rema	arks:												

Project Site:	Lake Pov	vell Pip	eline – Short Cr	eek, V	Vest Canaan Gap	Cit	y/County:	:	Wa	shington	Sampling D	ate:	7/22	/09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					Sta	te: U	Sampling P	oint:	Soil	Pit #1	
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sectio	n, Towns	hip, Rar	ige:	T43S R1	1W S30				
Landform (hillslope, ter	race, etc.): R	Riparian area		L	ocal relief	(concave	, conve	, non	e): non	e	Slop	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		37.01125466	Long	g:		-113.1	1302668	Datum:		WGS 8	4	
Soil Map Unit Name:	Schmut	z loam	I.							NW	I classification:	Not ma	oped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	ime of year?	Yes	\boxtimes	No		(If no, exp	olain in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distur	bed?	Are "Nor	rmal Ciro	cumst	ances" pre	sent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problema	atic?	(If neede	ed, expla	ain an	y answers	in Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No											
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes		No	\boxtimes					
Wetland Hydrology Present?	Yes	\boxtimes	No											
Remarks: Soil pit is in the lower riparian area adjace														

VEGETATION Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:	:					
1. Elaeagnus angustifolia	<u>% Cover</u> 25	<u>Species :</u> Y	FACW-	Number of Dominant Species	That Ara					
2. Salix exigua	5	Ŷ	OBL	OBL, FACW, or FAC:	That Are	4-5		(A)		
 Tamarix ramosissima 4. 	25	N	NI	Total Number of Dominant Sp All Strata:	ecies Across	5		(B)		
Sapling/Shrub Stratum	55	= Total Cov	er	Percent of Dominant Species OBL, FACW, or FAC:	That Are	80-100	80-100% (A			
1.				Prevalence Index worksheet	:					
2.				Total %Cover of :		Multip	<u>y by:</u>			
3.				OBL species	x1 =					
4.				FACW species			x2 =			
5.				FAC species		x3 =				
		= Total Cov	er	FACU species	FACU species					
Herb Stratum				UPL species		x5 =				
1. Cynodon dactylon	2	Y	FAC	Column Totals:			(B)			
2. Eleocharis macrostachya	2	Y	OBL	Prevalence Index = B/A =						
3. UNID Euphorbiaceae?	2	Y	UNK	Hydrophytic Vegetation Indicators:						
4.				Dominance Test is	>50%					
5.				Prevalence Index i	s <3.0 ¹					
6. 7.				 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 						
8.				Problematic Hydrophytic Vegetation ¹ (Explain)						
		= Total Cov	er							
Woody Vine Stratum 1.				¹ Indicators of hydric soil and w	etland hydro	logy must	be prese	ent.		
2.										
		= Total Cov	er	Hydrophytic Vegetation				_		
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes	\boxtimes	No			
Remarks:										

VECETATION

SOIL Sampling Point: Soil Pit #1 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) % Type¹ Texture (inches) Remarks 5YR 4/4 100 Soil is damp. ~2" ribbon 0-12 Sandy sic 12-18 5 YR 4/4 80 2.5 YR 2/0 20 Sandy sic Soil is damp. ~2" ribbon ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: Hydric Soils Present? \boxtimes Depth (Inches): Yes No Remarks: Mapped as non-hydric soil.

Wetl	and Hydrology Indica	tors:														
Prima	ary Indicators (any one	indicator	is suffic	cient)				Secondary Indicators (2 or more required)								
	Surface Water (A1)				\boxtimes	Salt Crust (B11)			Water Marks (B1) (Riv	verine)						
	High Water Table (A2	2)				Biotic Crust (B12)			Sediment Deposits (B2) (Riverine)							
\boxtimes	Saturation (A3)				Aquatic Invertebrates (B13)			Drift Deposits (B3) (Riverine)								
	Water Marks (B1) (Nonriverine)				Hydrogen Sulfide Odor (C1)			Drainage Patterns (B10)								
Sediment Deposits (B2) (Nonriverine)				Oxidized Rhizospheres along Living Roots (C3)			Dry-Season Water Table (C2)									
Drift Deposits (B3) (Nonriverine)				Presence of Reduced Iron (C4)			Thin Muck Surface (C7)									
Surface Soil Cracks (B6)						Recent Iron Reduction in Tilled Soils (C6)			Crayfish Burrows (C8)							
Inundation Visible on Aerial Imagery (B7)						Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	jery (C	9)				
Water-Stained Leaves (B9)									Shallow Aquitard (D3)	1						
									FAC-Neutral Test (D5)						
Field	Observations:															
Surfa	ace Water Present?	Yes		No	\boxtimes	Depth (inches):										
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):										
	ration Present? Ides capillary fringe)	Yes		No		Depth (inches):	Wetla	nd Hy	drology Present?	Yes	\boxtimes	No				
Desc	ribe Recorded Data (s	tream ga	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if ava	ailable:									
Rem	arks:															

Project Site:	Lake Pov	well Pip	peline – Short C	Cit	ity/County: Washington			Sampling D	ate:	: 7/22/09					
Applicant/Owner:	Utah Div	ision of	f Water Resourc	es					Sta	te: UT	Sampling P	oint:	Soil	Pit #2	2
Investigator(s):	C. Jones	, B. Lir	ning, E. Zimmer	man		Sectio	n, Towns	hip, Rar	nge:	T43S R11	IW S30				
Landform (hillslope, ter	race, etc.): F	Riparian area		L	ocal relief	(concave	, conve	k, non	e): none)	Slop	e (%):	0	
Subregion (LRR):	Interior	Deser	is Lat:		37.01140832	Long	g:		-113.	1302319	Datum:		WGS 8	84	
Soil Map Unit Name:	Schmut	tz loam	1							NWI	classification:	Not ma	pped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this	time of year?	Yes	\boxtimes	No		(If no, expl	ain in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distur	bed?	Are "No	rmal Cire	cumst	ances" pres	sent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problema	atic?	(If neede	ed, expla	ain an	y answers i	n Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?		No	\boxtimes				
Hydric Soil Present?		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?		No	\boxtimes				
Remarks: Soil pit is in riparian area.							

VEGETATION								
Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant <u>Species?</u>	Indicator <u>Status</u>	Dominance Test Worksheet:				
1. 2.				Number of Dominant Species T OBL, FACW, or FAC:	hat Are	3		(A)
3. 4.				Total Number of Dominant Spe All Strata:	cies Across	0		(B)
Sapling/Shrub Stratum		= Total Cove	er	Percent of Dominant Species T OBL, FACW, or FAC:	0%		(A/B)	
1. Chrysothamnus viscida	10	Y	UPL	Prevalence Index worksheet:				
2.		•	0. 2	Total %Cover of :		Multipl	v bv:	
3.				OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
	10	= Total Cove	er	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1. Chrysothamnus viscida	5	Y	UPL	Column Totals: (A)				(B)
2. Salsola kali	5	Y	FACU	Prevalence	=			
3.				Hydrophytic Vegetation Indicators:				
4.				Dominance Test is >50%				
5.				Prevalence Index is	s <3.0 ¹			
6.				Morphological Adap	-	ovide supp	orting da	ita in
7.				Remarks or on a se			J	
8.				Problematic Hydrop	ohvtic Vegeta	ation ¹ (Exc	lain)	
	10	= Total Cove	er		, ,		,	
Woody Vine Stratum								
1.				¹ Indicators of hydric soil and we	etland hydrol	ogy must	be prese	nt.
2.								
		= Total Cove	er	Hydrophytic Vegetation				
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes		No	\boxtimes
Remarks:								

nches) C 0-18	Color (moist) 5YR 5/4	% 100	Color (Mo	pist)	%	Type ¹	Loc ²	Texture		Rema	rks		
0-18	5YR 5/4	100						Es al	Denite hetter				
								Fs si	Dry to bottor	n of pit.			
	ntration, D=Deplet					e Lining, R	C=Root Channe		ators for Problem	atic Hydric	: Soils ³ :		
Histosol (A1) Sandy Redox (S5)								1 cm Muck (A9) (LRR C)					
				Stripped	Matrix (S6)				2 cm Muck (A10)	(LRR B)			
Black Histic	: (A3)			Loamy N	/ucky Miner	al (F1)			Reduced Vertic (F18)			
] Hydrogen S	Sulfide (A4)			Loamy C	Bleyed Matri	x (F2)			Red Parent Mate	rial (TF2)			
Stratified La	ayers (A5) (LRR C)		Depleted	d Matrix (F3)			Other (Explain in Remarks)					
1 cm Muck	(A9) (LRR D)			Redox D	ark Surface	(F6)							
Depleted B	elow Dark Surface	e (A11)		Depleted	d Dark Surfa	ce (F7)							
Thick Dark	Surface (A12)			Redox D	epressions	(F8)							
Sandy Muc	ky Mineral (S1)			Vernal P	ools (F9)			³ Indic:	ators of hydrophyti	c vegetatio	n and wet	land	
Sandy Gley	ed Matrix (S4)								logy must be prese			lana	
Restrictive Laye	r (if present):												
ype:													
	Depth (Inches):							resent?	Ye	es 🗆	No	D	

Wetla	and Hydrology Indicat	ors:												
Prima	ary Indicators (any one i	indicator	is suffic	cient)				Sec	ondary Indicators (2 or m	nore requi	red)			
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	erine)				
	High Water Table (A2))				Biotic Crust (B12)			Sediment Deposits (B2) (Riverine)					
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Riverine)					
	Water Marks (B1) (Nonriverine)					Hydrogen Sulfide Odor (C1)			Drainage Patterns (B10)					
	Sediment Deposits (B2) (Nonriverine)					Oxidized Rhizospheres along Living Roots (C3)			Dry-Season Water Table (C2)					
Drift Deposits (B3) (Nonriverine)						Presence of Reduced Iron (C4)			Thin Muck Surface (C7)					
	Surface Soil Cracks (B6)				Recent Iron Reduction in Tilled Soils (C6)			Crayfish Burrows (C8)						
	Inundation Visible on Aerial Imagery (B7)					Other (Explain in Remarks)			Saturation Visible on Aerial Imagery (C9)					
Water-Stained Leaves (B9)									Shallow Aquitard (D3)					
							FAC-Neutral Test (D5)							
Field Observations:														
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):								
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):								
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetlar	nd Hye	drology Present?	Yes		No		
Desc	ribe Recorded Data (st	ream gai	uge, mc	onitoring	g well, a	aerial photos, previous inspections), if availa	able:							
Rema	arks:													

Project Site:	Lake Pov	vell Pip	eline – Gould W	/ash		Cit	y/County:		Was	shington	Sampling Da	ate:	7/22	09	
Applicant/Owner:	Utah Divi	ision of	Water Resource	es					Stat	e: UT	Sampling Po	oint:	Soil	Pit #1	
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmerr	man		Sectio	n, Townsl	hip, Ran	ge:	T43S R11W	S30				
Landform (hillslope, te	rrace, etc.): R	liparian area		L	ocal relief	(concave	, convex	, none	e): none		Slope	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		37.11858485	Long	g:		-113.2	435626	Datum:	Ň	NGS 8	4	
Soil Map Unit Name:	Pastura	-Esplin	n complex, 0 to 1	0 perc	cent slopes					NWI cla	ssification:	Not map	ped		
Are climatic / hydrologi	ic conditio	ns on t	he site typical fo	r this t	ime of year?	Yes	\boxtimes	No		(If no, explain	in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distur	bed?	Are "Nor	mal Circ	umsta	ances" presen	t?	Yes	\boxtimes	No	
Are Vegetation ,	Soil	□,	Or Hydrology	□,	naturally problema	atic?	(If neede	ed, expla	in any	answers in F	temarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No						
Hydric Soil Present?	Yes	\boxtimes	No		Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Wetland Hydrology Present?	Yes	\boxtimes	No						
Remarks: Soil pit is in the lower riparian area adjace	nt to th	e stre	eam c	hanne	91.				

Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:				
<i>1.</i> 2.				Number of Dominant Species TI OBL, FACW, or FAC:	hat Are	1		(A)
3. 4.				Total Number of Dominant Spec All Strata:	cies Across	1		(B)
Sapling/Shrub Stratum		= Total Cove	er	Percent of Dominant Species Th OBL, FACW, or FAC:	hat Are	100%		(A/B)
1.				Prevalence Index worksheet:				
2.				Total %Cover of :		Multipl	v by:	
3.				OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
		= Total Cove	ər	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1. Eleocharis macrostachya	40	Y	OBL	Column Totals:	(A)			(B)
2. Typha latifolia	1	N	OBL	Prevalence li	ndex = B/A :	=		
3.				Hydrophytic Vegetation Indica	ators:			
4.				Dominance Test is >	>50%			
5.				Prevalence Index is	<u><</u> 3.0 ¹			
6. 7.				Morphological Adapt Remarks or on a sep	tations ¹ (Pro parate sheet	vide supp :)	oorting da	ata in
8.				Problematic Hydropl		tion ¹ (Evr	loin)	
	41	= Total Cove	٥r		nylic vegela		nairi)	
Woody Vine Stratum								
1.				¹ Indicators of hydric soil and we	tland hydrolo	ogy must	be prese	nt.
2.								
		= Total Cove	er	Hydrophytic Vegetation				
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes	\boxtimes	No	
Remarks:								

SOIL Sampling Point: Soil Pit #1 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Color (moist) Color (Moist) % Loc² (inches) Type¹ Texture Remarks 7.5YR 4/6 70 2.5 YR 6/0 30 С Μ Refusal at 10" 0-10 Sand ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) \boxtimes Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: Hydric Soils Present? Depth (Inches): Yes \boxtimes No Remarks: Mapped as non-hydric soil. Hydrogen sulfide odor.

Wetl	and Hydrology Indica	tors:											
Prim	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or r	nore requi	red)		
	Surface Water (A1)				\boxtimes	Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2	2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	ie)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (Ri	verine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B1	0)			
\boxtimes	Sediment Deposits (E	32) (Nonr	iverine)		Oxidized Rhizospheres along Living Root	ts (C3)		Dry-Season Water Ta	ble (C2)			
\boxtimes	Drift Deposits (B3) (N	onriverin	ne)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
\boxtimes	Surface Soil Cracks (B6)				Recent Iron Reduction in Tilled Soils (C6))		Crayfish Burrows (C8)				
	Inundation Visible on	Aerial Im	agery (B7)		Other (Explain in Remarks)			Saturation Visible on A	Aerial Imag	jery (C	9)	
	Water-Stained Leave	s (B9)							Shallow Aquitard (D3)				
									FAC-Neutral Test (D5)			
Field	Observations:												
Surfa	ace Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (s	tream ga	uge, mo	onitoring	g well,	aerial photos, previous inspections), if availa	able:						
Rem	arks:												

HYDROLOGY

Project Site:	Lake Pov	vell Pip	eline – Gould W	/ash		Cit	y/County:	:	Was	shington	Sampling Da	ate:	7/22/	09	
Applicant/Owner:	Utah Divi	ision of	Water Resource	es					Stat	e: UT	Sampling Po	oint:	Soil	Pit #2	2
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmerr	man		Sectio	n, Towns	hip, Ran	ige:	T43S R11W	S30				
Landform (hillslope, ter	race, etc.): R	liparian area		L	ocal relief	(concave	, convex	, non	e): none		Slope	e (%):	0	
Subregion (LRR):	Interior	Desert	s Lat:		37.11861348	Long	g:		-113.2	2435555	Datum:	,	WGS 8	4	
Soil Map Unit Name:	Pastura	-Esplir	o complex, 0 to 1	0 perc	cent slopes					NWI cla	assification:	Not map	ped		
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	r this t	ime of year?	Yes	\boxtimes	No		(If no, explain	n in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly distur	bed?	Are "Nor	mal Circ	cumsta	ances" preser	nt?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally problema	atic?	(If neede	ed, expla	in an	y answers in I	Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes		No	\boxtimes				
Remarks: Soil pit is on riparian shelf above channel.								

Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:				
1. 2.				Number of Dominant Species T OBL, FACW, or FAC:	hat Are	1		(A)
3. 4.				Total Number of Dominant Spe All Strata:	cies Across	1		(B)
∽. Sapling/Shrub Stratum		= Total Cove	er	Percent of Dominant Species T OBL, FACW, or FAC:	hat Are	100%		(A/B)
1.				Prevalence Index worksheet:				
2.				Total %Cover of :		Multipl	<u>y by:</u>	
3.				OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
		= Total Cove	er	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1. Cynodon dactylon	70	Y	FAC	Column Totals:	(A)			(B)
2.				Prevalence	Index = B/A	=		
3.				Hydrophytic Vegetation Indic	ators:			
4.				Dominance Test is	>50%			
5.				Prevalence Index is	<u><</u> 3.0 ¹			
6. 7.				Morphological Adap Remarks or on a se			oorting da	ita in
8.					-		1.1.1	
0.	70	= Total Cove		Problematic Hydrop	onytic vegeta	ation (Exp	biain)	
Woody Vine Stratum	70		51					
1.				¹ Indicators of hydric soil and we	etland hydrol	ogy must	be prese	nt.
2.						-		
2.		= Total Cove	er	Hydrophytic Vegetation				
% Bare Ground in Herb Stratum	% Cover of Bio			Present?	Yes	\boxtimes	No	
Remarks:				-				

SOIL Sampling Point: Soil Pit #2 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) Type¹ (inches) % Texture Remarks 5 YR 4/4 100 Fine cs 0-16 Color consistent throughout. ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Sandy Redox (S5) Histosol (A1) 1 cm Muck (A9) (LRR C) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Vernal Pools (F9) Sandy Mucky Mineral (S1) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: Hydric Soils Present? \boxtimes Depth (Inches): Yes No Remarks: Mapped as non-hydric soil. Hydrogen sulfide odor.

Wetl	and Hydrology Indica	tors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or	more requi	ed)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Ri	verine)			
	High Water Table (A2	2)				Biotic Crust (B12)			Sediment Deposits (B	32) (Riveri r	ie)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (R	iverine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B	10)			
	Sediment Deposits (E	32) (Nonr	iverine)		Oxidized Rhizospheres along Living Roc	ots (C3)		Dry-Season Water Ta	able (C2)			
	Drift Deposits (B3) (N	lonriverir	ıe)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	(7			
	Surface Soil Cracks (B6)				Recent Iron Reduction in Tilled Soils (C6	6)		Crayfish Burrows (C8)			
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)			Saturation Visible on	Aerial Imag	jery (C	9)	
	Water-Stained Leave	s (B9)							Shallow Aquitard (D3))			
									FAC-Neutral Test (D5	5)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (s	tream ga	uge, mo	nitorino	g well,	aerial photos, previous inspections), if avai	ilable:						
Rem	arks:												

HYDROLOGY

Project Site:	Lake Pov	vell Pip	eline –Ash Cree	ek		Cit	y/County:		Was	shington	Sampling Da	ate:	7/2′	1/09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					Stat	e: UT	Sampling Po	oint:	Ash	Cree	k
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sectio	n, Townsl	hip, Ran	ige:	T39S R13W	S25				
Landform (hillslope, te	rrace, etc.): R	Riparian area		L	_ocal relief	(concave	, convex	, non	e): none		Slope	e (%):		
Subregion (LRR):	Interior	Desert	s Lat:		37.37059848	Long	g:		-113.2	2542303	Datum:	,	WGS	84	
Soil Map Unit Name:	Chilton	gravell	y loam, 5 to 30	percer	nt slopes					NWI cla	ssification:	Not map	ped		
Are climatic / hydrolog	c conditio	ns on t	he site typical fo	or this t	time of year?	Yes	\boxtimes	No		(If no, explain	in Remarks.)				
Are Vegetation ,	Soil	□,	Or Hydrology	□,	significantly distu	rbed?	Are "Nor	mal Circ	cumsta	ances" presen	t?	Yes	\boxtimes	No	
Are Vegetation ,	Soil	□,	Or Hydrology	□,	naturally problem	atic?	(If neede	ed, expla	in an	y answers in F	Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No	\boxtimes				
Hydric Soil Present?	Yes	No		Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	No	\boxtimes				
Remarks:							

Tree	Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:				
1.	Populus fremontii	20	Y	FACW*	Number of Dominant Species T	hat Are	3		(A)
2.	Acer negundo	2	Ν	FACW*	OBL, FACW, or FAC:		3		(A)
3. 4.					Total Number of Dominant Spec All Strata:	cies Across	9		(B)
	ng/Shrub Stratum	22	= Total Cove	er	Percent of Dominant Species T OBL, FACW, or FAC:	hat Are	33%		(A/B)
1.	Populus tremuloides	2	N	UPL	Prevalence Index worksheet:				
2.	Rhus trilobata	2	N	NI	Total %Cover of :		Multipl	<u>y by:</u>	
3.	Chrysothamnus sp.	5	Y	UPL	OBL species		x1 =		
4.	Artemisia spp.	5	Y	UPL	FACW species		x2 =		
5.	Juniperus sp.	1	N	UPL	FAC species		x3 =		
		15	= Total Cove	er	FACU species		x4 =		
Herb	Stratum				UPL species		x5 =		
1.	Bromus diandrus	5	Y	UPL	Column Totals:	(A)			(B)
2.	Xanthium strumarium	1	Y	FAC	Prevalence I	ndex = B/A	=		
3.	Deschampsia sp.	1	Y	FACW	Hydrophytic Vegetation Indic	ators:			
4.	Sisymbrium altissimum	1	Y	UPL	Dominance Test is :	>50%			
5.	Salsola kali	1	Y	UPL	Prevalence Index is	<3.0 ¹			
6. 7.	Sphaeralcea rusbyi	1	Υ	UPL	Morphological Adap Remarks or on a se	tations ¹ (Pro		porting da	ata in
8.									
0.		10	= Total Cov	or	Problematic Hydrop	hytic Vegeta	ation" (Exp	blain)	
Wood	ly Vine Stratum	10							
1.	y vine oradum				¹ Indicators of hydric soil and we	tland hydrol	ogy must	be prese	nt.
2.									
			= Total Cove	er	Hydrophytic Vegetation				
% Ba	re Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes		No	\boxtimes
Rema	irks:	1		1	_	ļ ļ	I	I	I

(inches) Color (moist) % Color (Moist) % Type ¹ Loc ² Texture	Remarks
	rs for Problematic Hydric Soils ³ :
☐ Histosol (A1)	cm Muck (A9) (LRR C)
Histic Epipedon (A2) Stripped Matrix (S6) 2 d	cm Muck (A10) (LRR B)
Black Histic (A3) Loamy Mucky Mineral (F1)	educed Vertic (F18)
Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Re	ed Parent Material (TF2)
Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Ot	ther (Explain in Remarks)
1 cm Muck (A9) (LRR D)	
Depleted Below Dark Surface (A11)	
Thick Dark Surface (A12)	
Sandy Mucky Mineral (S1)	s of hydrophytic vegetation and wetland
Sandy Gleyed Matrix (S4) hydrology	/ must be present.
estrictive Layer (if present):	
vpe:	

Wetland H	ydrology Indicat	ors:											
Primary Indicators (any one indicator is sufficient) Secondary Indicators (2 or more required)										red)			
Surfa	ace Water (A1)					Salt Crust (B11)			Water Marks (B1) (Ri	verine)			
🗌 High	Water Table (A2))				Biotic Crust (B12)			Sediment Deposits (B	2) (Riveri r	ıe)		
□ Satu	ration (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (R	iverine)			
□ Wate	er Marks (B1) (No	nriverin	e)			Hydrogen Sulfide Odor (C1)		\boxtimes	Drainage Patterns (B	10)			
Sediment Deposits (B2) (Nonriverine)													
Drift	Deposits (B3) (No	onriverir	ıe)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	7)			
□ Surfa	ace Soil Cracks (E	36)				Recent Iron Reduction in Tilled Soils (C6	6)		Crayfish Burrows (C8))			
🔲 Inun	dation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)			Saturation Visible on	Aerial Imag	jery (C	9)	
□ Wate	er-Stained Leaves	s (B9)							Shallow Aquitard (D3))			
									FAC-Neutral Test (D5)			
Field Obse	ervations:												
Surface Wa	ater Present?	Yes		No	\boxtimes	Depth (inches):							
Water Tabl	le Present?	Yes		No	\boxtimes	Depth (inches):							
Saturation (includes ca	Present? apillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	
Describe F	Recorded Data (st	ream gai	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avail	lable:						
Remarks:													

HYDROLOGY

Project Site:	Lake Po	well Pip	oeline – Tributar	y East	of Ash Creek	C	ity/County	<i>/</i> :	Wa	shington	Sampling D	ate:	7/21	/09	
Applicant/Owner:	Utah Div	ision of	f Water Resourc	es					Sta	te: UT	Sampling Po	oint:	Soil	Pit #1	i -
Investigator(s):	C. Jones	s, B. Lir	ning, E. Zimmer	man		Secti	ion, Towns	ship, Rar	ige:	T39S R12	N S08				
Landform (hillslope, te	rrace, etc	.): F	Riparian area			Local relie	ef (concave	e, conve	k, non	e): none		Slope	e (%):		
Subregion (LRR):	Interior	Deser	is Lat:		37.41027219	Lo	ng:		-113.	2325807	Datum:	١	VGS	84	
Soil Map Unit Name:	Menefe	e-Rocl	coutcrop comple	ex, 25	to 60 percent slo	opes				NWI	classification:	Upland			
Are climatic / hydrolog	ic conditio	ons on t	he site typical fo	or this t	time of year?	Yes	\boxtimes	No		(If no, expla	in in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly dist	turbed?	Are "No	rmal Ciro	cumst	ances" prese	ent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	\Box ,	naturally proble	matic?	(If need	ed, expla	ain an	y answers in	Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes		No	\boxtimes				
Remarks:								

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:				
 Populus fremontii 2. 	20	Y	FACW*	Number of Dominant Species Th OBL, FACW, or FAC:	nat Are	3		(A)
3. 4.				Total Number of Dominant Speci All Strata:	ies Across	4		(B)
Sapling/Shrub Stratum	20	= Total Cove	er	Percent of Dominant Species Th OBL, FACW, or FAC:	at Are	75%		(A/B)
1. Rhus trilobata	10	Y	NI	Prevalence Index worksheet:				
2. Tamarix ramosissima	10	Y	FACW	Total %Cover of :		Multip	ly by:	
3. Amelanchier alnifolia	2	N	FACU-	OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
	22	= Total Cove	er	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1. Juncus sp.	25	Y	FACW or OBL	Column Totals:	(A)			(B)
2. Melilotus officianalis	2	Ν	FACU	Prevalence In	ndex = B/A =	=		
3.				Hydrophytic Vegetation Indica	tors:			
4.				Dominance Test is >	50%			
5.				Prevalence Index is <	<u><</u> 3.0 ¹			
6. 7.				Morphological Adapta Remarks or on a sep			porting da	ata in
8.				Problematic Hydroph	wtic Vegeta	tion ¹ (Ex	nlain)	
	27	= Total Cove	er	i robiematio riyuropri	,, vogete		plainij	
Woody Vine Stratum				1				
1.				¹ Indicators of hydric soil and wet	land hydrol	ogy must	be prese	nt.
2.								
	I	= Total Cove	er	Hydrophytic Vegetation	M	57		
% Bare Ground in Herb Stratum	% Cover of Bio	tic Crust		Present?	Yes	\boxtimes	No	
Remarks:								

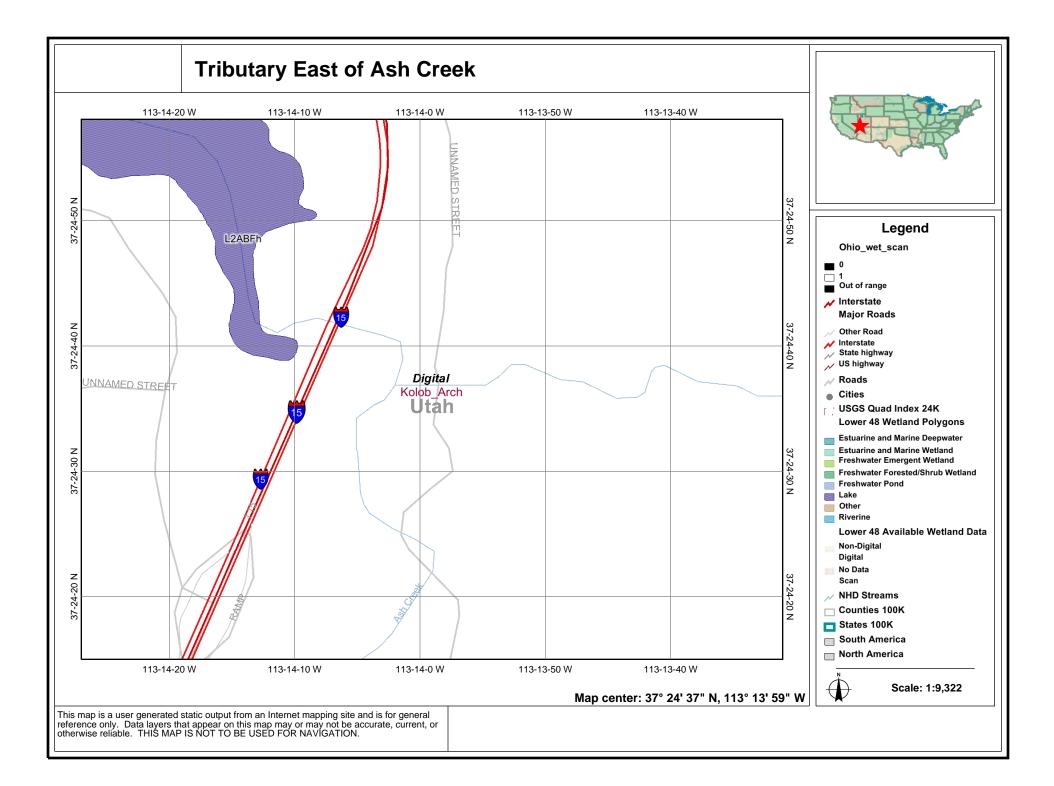
Project Site: Lake Powell Pipeline – Tributary East of Ash Creek

SOIL	SOIL Sampling Point: Soil Pit #1											
Profile Desc	ription: (Describe	e to the de	epth nee	ded to c	locument the indica	ator or conf	irm the abs	ence of indic	ators.)			
Depth	Matrix	x			Redox Fe	atures						
(inches)	Color (moist)	%	(Color (Mo	oist) %	Type ¹	Loc ²	Textu	ire	Remarks		
0-18	5YR 4/4	100						Silt	clay			
					rix, ² Location: PL=F	Pore Lining,	RC=Root Cl					
Hydric Soil I	ndicators: (Appli	cable to a	all LRRs,	unless	otherwise noted.)				dicators for Problema	tic Hydric Soil	ls³:	
Histoso					Sandy Redox (S5)					.RR C)		
	Epipedon (A2)				Stripped Matrix (S	6)			, ,	(LRR B)		
Black H	Histic (A3)				Loamy Mucky Min	eral (F1)			Reduced Vertic (F	18)		
	gen Sulfide (A4)				Loamy Gleyed Ma	trix (F2)			Red Parent Mater	al (TF2)		
	ed Layers (A5) (LF	RR C)			Depleted Matrix (F	-3)			Other (Explain in	Remarks)		
	/luck (A9) (LRR D)	1			Redox Dark Surfa	ce (F6)						
	ed Below Dark Su	rface (A11)		Depleted Dark Sur	. ,						
Thick D	Dark Surface (A12))			Redox Depression	ns (F8)						
□ Sandy	Mucky Mineral (S	1)			Vernal Pools (F9)			³ In	dicators of hydrophytic	vegetation and	d wetland	
	Gleyed Matrix (S4	<u>,</u>					1	hy	drology must be prese	nt.		
Restrictive L	_ayer (if present):	:										
Туре:												
Depth (Inches	s):						Hydric So	oils Present?	Ye	6 🗌 N	lo 🛛	1
Remarks:	Mapped as non-h	nydric soil.										
HYDROLO	GY											
Wetland Hyd	drology Indicator	s:										
Primary Indic	ators (any one ind	licator is s	ufficient)					Sec	ondary Indicators (2 or	more required)		
Surfac	e Water (A1)				Salt Crust (B11)				Water Marks (B1) (R	verine)		
🔲 🛛 High W	Vater Table (A2)				Biotic Crust (B12)				Sediment Deposits (I	32) (Riverine)		
Satura	ition (A3)				Aquatic Invertebra	tes (B13)			Drift Deposits (B3) (F	liverine)		
□ Water	Marks (B1) (Nonr	iverine)			Hydrogen Sulfide	Odor (C1)		\boxtimes	Drainage Patterns (B	10)		
Sedim	ent Deposits (B2)	(Nonriver	rine)		Oxidized Rhizosph	neres along	Living Roots	s (C3)	Dry-Season Water T	able (C2)		
Drift D	eposits (B3) (Non	riverine)			Presence of Redu	ced Iron (C4	4)		Thin Muck Surface (27)		
□ Surfac	e Soil Cracks (B6))			Recent Iron Reduc	ction in Tille	d Soils (C6)		Crayfish Burrows (Ca	3)		
🛛 Inunda	ation Visible on Ae	rial Image	ry (B7)		Other (Explain in F	Remarks)			Saturation Visible on	Aerial Imagery	(C9)	
Water-	-Stained Leaves (E	B9)							Shallow Aquitard (D3)		
									FAC-Neutral Test (D	5)		
Field Observ	vations:											
Surface Wate	er Present?	Yes [Depth (inches	i):						
Water Table	Present?	Yes [] No		Depth (inches):						
Saturation Pr		Yes [Depth (inches	.).		Wetland Hv	drology Present?	Yes [] No	\boxtimes
(includes cap						·					•	ائت
Describe Re	corded Data (strea	am gauge,	, monitori	ing well,	aerial photos, previo	us inspectio	ons), if availa	ble:				
Remarks:												

Project Site:	Lake Pov	vell Pip	eline – Tributary	/ East	of Ash Creek		City/County	y:	Wa	shington	Sampling D	ate:	7/21	/09	
Applicant/Owner:	Utah Divi	ision of	Water Resourc	es					Sta	te: UT	Sampling P	oint:	Soil	Pit #2	2
Investigator(s):	C. Jones	, B. Lin	ning, E. Zimmer	man		Sec	tion, Town:	ship, Rai	nge:	T39S R12	N S08				
Landform (hillslope, ter	rrace, etc.): R	liparian area			Local reli	ief (concav	e, conve	x, nor	ie): none		Slope	e (%):		
Subregion (LRR):	Interior	Desert	s Lat:		37.41030063	Lo	ong:		-113.	232565	Datum:	N	NGS 8	34	
Soil Map Unit Name:	Menefe	e-Rock	coutcrop comple	ex, 25	to 60 percent slo	pes				NWI	classification:	Upland			
Are climatic / hydrologi	c conditio	ns on t	he site typical fo	or this t	time of year?	Yes	\boxtimes	No		(If no, expla	in in Remarks.)				
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	significantly dist	urbed?	Are "No	ormal Cir	cums	ances" pres	ent?	Yes	\boxtimes	No	
Are Vegetation \Box ,	Soil	□,	Or Hydrology	□,	naturally probler	natic?	(If need	led, expl	ain ar	y answers ir	Remarks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

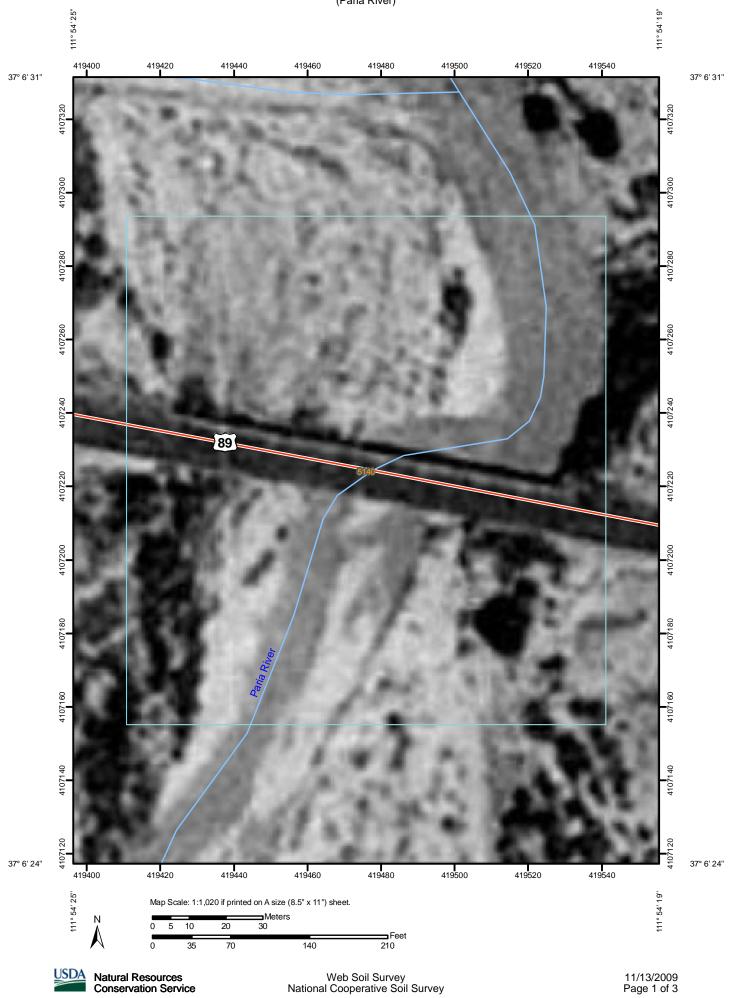
Hydrophytic Vegetation Present?	Yes	No	\boxtimes				
Hydric Soil Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Wetland Hydrology Present?	Yes	No	\boxtimes				
Remarks:							


Tree Stratum (Use scientific names.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:				
1. Populus fremontii	20	Y	FACW*	Number of Dominant Species T	hat Are	2		(A)
2. Juniperus sp.	5	Ν	UPL	OBL, FACW, or FAC:		2		(A)
3. 4.				Total Number of Dominant Spec All Strata:	cies Across	4		(B)
Sapling/Shrub Stratum	25	= Total Cove	ər	Percent of Dominant Species T OBL, FACW, or FAC:	hat Are	50%		(A/B)
1. Rhus trilobata	10	Y	NI	Prevalence Index worksheet:				
2. Quercus gambelii	5	Ν	FACW	Total %Cover of :		Multipl	<u>y by:</u>	
3. Artemesia sp.	2	N		OBL species		x1 =		
4.				FACW species		x2 =		
5.				FAC species		x3 =		
	17	= Total Cove	er	FACU species		x4 =		
Herb Stratum				UPL species		x5 =		
1. Juncus sp.	2	Y	FACW or OBL	Column Totals:	(A)			(B)
2. Melilotus officianalis	2	Y	FACU	Prevalence I	ndex = B/A	=		
3.				Hydrophytic Vegetation Indic	ators:			
4.				Dominance Test is :	>50%			
5.				Prevalence Index is	<u><</u> 3.0 ¹			
6. 7.				Morphological Adap Remarks or on a se			oorting da	ata in
8.				Problematic Hydrop	hutia Vagata	tion ¹ (Eve	lain)	
	4	= Total Cove	er	Problematic Hydrop	nytic vegeta	auon (Exp	nain)	
Woody Vine Stratum								
1.				¹ Indicators of hydric soil and we	tland hydrol	ogy must	be prese	nt.
2.								
		= Total Cove	er	Hydrophytic Vegetation		_		
% Bare Ground in Herb Stratum	% Cover of Biot	tic Crust		Present?	Yes		No	\boxtimes
Remarks:								

SOIL Sampling Point: Soil Pit #2 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** % Loc² Color (moist) Color (Moist) Type¹ (inches) % Texture Remarks 5YR 5/4 100 ~2" worm when wet 0-18 Sandy sic ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) 1 cm Muck (A9) (LRR C) Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) ³Indicators of hydrophytic vegetation and wetland Sandy Gleyed Matrix (S4) hydrology must be present. Restrictive Layer (if present): Type: \boxtimes Depth (Inches): Hydric Soils Present? Yes No Remarks: Color is continuous throughout, salt deposits, large chunks of gypsum. Mapped as non-hydric soil. HYDROLOGY

Wetla	and Hydrology Indica	tors:											
Prima	ary Indicators (any one	indicator	is suffic	cient)				Sec	ondary Indicators (2 or i	more requi	red)		
	Surface Water (A1)					Salt Crust (B11)			Water Marks (B1) (Riv	verine)			
	High Water Table (A2	2)				Biotic Crust (B12)			Sediment Deposits (B	2) (Riverir	ıe)		
	Saturation (A3)					Aquatic Invertebrates (B13)			Drift Deposits (B3) (R	iverine)			
	Water Marks (B1) (No	onriverin	e)			Hydrogen Sulfide Odor (C1)			Drainage Patterns (B	10)			
	Sediment Deposits (E	32) (Nonr	iverine)		Oxidized Rhizospheres along Living Roo	ots (C3)		Dry-Season Water Ta	ble (C2)			
	Drift Deposits (B3) (N	onriverir	ıe)			Presence of Reduced Iron (C4)			Thin Muck Surface (C	:7)			
	Surface Soil Cracks (B6)				Recent Iron Reduction in Tilled Soils (Co	6)		Crayfish Burrows (C8))			
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)			Saturation Visible on	Aerial Imag	jery (C	9)	
	Water-Stained Leave	s (B9)							Shallow Aquitard (D3))			
									FAC-Neutral Test (D5	i)			
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (s	tream ga	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if ava	ilable:						
Rema	arks:												

APPENDIX B


NATIONAL WETLANDS INVENTORY MAP FOR TRIBUTARY EAST OF ASH CREEK

APPENDIX C

SOIL SURVEY MAPS

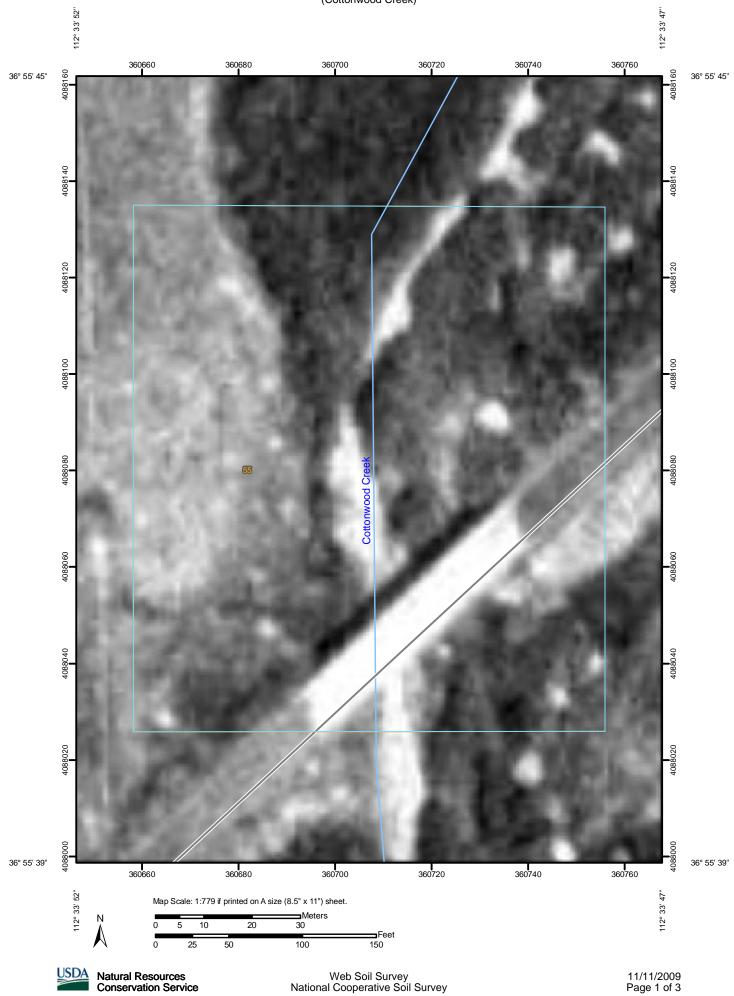


Soils Other Please rely on the bar scale on each map sheet for accurate map measurements. Special Point Features Special Line Features Source of Map: Natural Resources Conservation Service Image: Borrow Pit Short Steep Slope Other Source of Map: Natural Resources Conservation Service Image: Borrow Pit Short Steep Slope Other This product is generated from the USDA-NRCS certified data as the version date(s) listed below. Image: Clay Spot Other Soil Survey Area: Grand Staircase-Escalante National Monume Area, Parts of Kane and Garfield Counties, Utah Survey Area Data: Version 8, Oct 2, 2009 Image: Clay Spot Oceans Date(s) aerial images were photographed: 9/25/1992 Image: Clay Spot Streams and Canals Date(s) aerial images were photographed: 9/25/1992 Image: Clay Spot Streams and Canals Date(s) aerial images were photographed: 9/25/1992	Area of Interest (AOII) Wet Spot Solis Other Solid Map Units Special Line Features Special Point Features Cally Borrow Pit Cally Clay Spot Other Political Features Cally Clay Spot Other Political Features Cally Clay Spot Other Political Features Callies Water Features Callies Marsh or swamp Rails Rails Nine or Quarry Mine or Quarry Interstate Highways Miscellaneous Water Wajor Roads Rock Outcop Local Roads Sinkhole Sinkhole Sinkhole Sinkhole Sinkhole Sinkhole	MAP	LEGEND	MAP INFORMATION
Soils Other Soil Map Units Special Line Features Special Point Features Gully Blowout Short Steep Slope Borrow Pit Short Steep Slope Clay Spot Other Clay Spot Political Features Gravel Pit Water Features Gravel Pit Water Features Gravel Pit Water Features Gravel Pit Oceans Marsh or swamp Rails Mine or Quarry Interstate Highways Mine or Quarry Major Roads Sailne Spot Sailne Spot Sailne Spot Sinkhole Sailne Spot Sinkhole Silke or Slip Sinkhole Solids Cspot Sinkhole	Soils Soil Map Units Special Line Features Other Soil Map Units Special Line Features Soil Map Units Special Line Features Soil Map Units Special Line Features Soil Survey URL: http://websolisurey.nrcs.usd.go Borrow Pit Soil Streep Stope Other Clay Spot Other Other Clay Spot Other Other Soil Survey IRL: Mitp://websolisurey.nrcs.usd.go Coordinate System: UTM Zone 12N NADB3 Soil Survey Spot Other Other Soil Survey Area: Grand Staircase-Escalante National MA A Gravel Pit Water Features Soil Survey Area: Grand Staircase-Escalante National MA A Lava Flow Transportation Soil Survey Area: Grand Staircase-Escalante National MA Mine or Quarry Interstate Highways Major Roads Perennial Water Major Roads Saine Spot Sinkhole Sinkhole Sinkhole Soil Sopt Soil Sopt Soil Sopt Soil Sopt Spoil Area Spoil Area	Area of Interest (AOI)	🗘 Very Stony Spot	Map Scale: 1:1,020 if printed on A size (8.5" × 11") sheet.
Soil Map Units Special Line Features Special Line Features Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83 Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83 Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83 Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83 Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83 Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83 Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83 Maif Gravelly Spot Oceans Soil Survey Area Date(s) Coll 2, 2009 Date(s) Acting the wersion date(s) listed below. Marks or swamp Fease Maifs Maior Roads Version 8, Coll 2, 2009 Date(s) aerial images were photographed: 9/25/1992 Miscellaneous Water US Routes Major Roads Version 8, Coll 2, 2009 Date(s) aerial images were photographed:	Soll Map Units Other Blowout Image: Special Line Features Clay Spot Other Closed Depression Image: Cities Gravelly Spot Image: Cities Clay Flow Transportation Marsh or swamp Image: Rails Mine or Quarry Interstate Highways Miscellaneous Water Image: Cities Rock Outcrop Image: Cities Rock Outcrop Image: Cities Rock Outcrop Image: Cities Source of Map: Natural Resources Conservation Service Wite or Quarry Image: Cities Mine or Quarry Image: Cities Mine or Quarry Image: Cities Rock Outcrop Image: Cities Source of Map: Natural Resources Conservation Service Web Soll Survey Area Data: Version 8, Oct 2, 2009 Date(s) aerial images were photographed: 9 Mine or Quarry Image: Cities Source of Map: Natural Resources Conservation Service Wite rest Highways Porternial Water Rock Outcrop Source or Slip Source or Slip Source or Slip Source or Slip </td <td>Area of Interest (AOI)</td> <td>🖞 Wet Spot</td> <td>The soil surveys that comprise your AOI were mapped at 1:24,000</td>	Area of Interest (AOI)	🖞 Wet Spot	The soil surveys that comprise your AOI were mapped at 1:24,000
Special Point Features Gully Source of Map: Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Condinate System: UTN Zone 12N NAD83 Xet Clay Spot Other Other This product is generated from the USDA-NRCS certified data as the version date(s) listed below. Xet Clay Spot Other Other Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Xet Clay Spot Other Other Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Xet Clay Spot Other Other Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Xet Clay Spot Other Other Solic Spot Solic Spot Xet Sole Depression Cities Sole Spot Sole Spot Sole Spot Xet Arelly Spot Oceans Date(s) aerial images were photographed: 9/25/1992 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imager displayed on these maps. As a result, some minor shiftir of map unit boundaries may be evident. Xet Roke Outcrop Version Spot Version Sup	Special Point Features Soluty		_	Please rely on the bar scale on each map sheet for accurate map measurements.
Note Optic Political Features the version date(s) listed below. Closed Depression Cities Soil Survey Area: Grand Staircase-Escalante National Monume Area, Parts of Kane and Garfield Counties, Utah Survey Area Data: Version 8, Oct 2, 2009 Closed Depression Oceans Date(s) aerial images were photographed: 9/25/1992 Landfili Streams and Canals Date(s) aerial images were photographed: 9/25/1992 Lava Flow Transportation Parts of Kane and Saircase-Escalante National Monume Area, Parts of Kane and Garfield Counties, Utah Survey Area Data: Version 8, Oct 2, 2009 Marsh or swamp Mine or Quarry Miscellaneous Water Miscellaneous Water Sandy Spot Silke or Slip Silke or Slip Soidic Spot </td <td>Note of Queression Political Features the version date(s) listed below. Closed Depression Cities Careal Pit Water Features Gravel Pit Water Features Gravelly Spot Oceans Landfill Cities Landfill Streams and Canals Lava Flow Transportation Marsh or swamp HT Ralls Mine or Quary Interstate Highways Miscellaneous Water US Routes Perennial Water Major Roads Rock Outcrop Local Roads Sandy Spot Sandy Spot Sandy Spot Sinkhole Sinkhole Sinkhole Sinkhole Sinkhole Sinkhole Sinkhole Sodi C Spot Sodi C Spot Sodi Spot Sodi C Spot</td> <td>Image: Blowout Image: Borrow Pit</td> <td>Gully Short Steep Slope</td> <td>Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83</td>	Note of Queression Political Features the version date(s) listed below. Closed Depression Cities Careal Pit Water Features Gravel Pit Water Features Gravelly Spot Oceans Landfill Cities Landfill Streams and Canals Lava Flow Transportation Marsh or swamp HT Ralls Mine or Quary Interstate Highways Miscellaneous Water US Routes Perennial Water Major Roads Rock Outcrop Local Roads Sandy Spot Sandy Spot Sandy Spot Sinkhole Sinkhole Sinkhole Sinkhole Sinkhole Sinkhole Sinkhole Sodi C Spot Sodi C Spot Sodi Spot Sodi C Spot	Image: Blowout Image: Borrow Pit	Gully Short Steep Slope	Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83
Image: Second Secon	Image: Streams and Canals Nater Features Nate, Pattures Nate, Pattures ∴ Gravelly Spot Image: Oceans Survey Area Data: Version 8, Oct 2, 2009 Image: Data (1) ~ Streams and Canals Date(s) aerial images were photographed: 9/25/1992 Image: Data (1) ~ Streams and Canals The orthophoto or other base map on which the soil lines were photographed: 9/25/1992 Image: Data (1) ~ Streams and Canals The orthophoto or other base map on which the soil lines were photographed: 9/25/1992 Image: Data (1) ~ Interstate Highways The orthophoto or other base map on which the soil lines were photographed: 9/25/1992 Image: Data (1) Marsh or swamp Image: Mails The orthophoto or other base map on which the soil lines were photographed: 9/25/1992 Image: Data (1) Marsh or swamp Image: Data (1) The orthophoto or other base map on which the soil lines were photographed: 9/25/1992 Image: Data (1) Marsh or swamp Image: Data (1) The orthophoto or other base map on which the soil lines were photographed: 9/25/1992 Image: Data (1) Marsh or swamp Image: Data (1) The orthophoto or other base map on which the soil lines were photographed: 9/25/1992 Image: Data (1) Streams and Canals Image: Data (1) <td< td=""><td>Closed Depression</td><td></td><td>the version date(s) listed below. Soil Survey Area: Grand Staircase-Escalante National Monume</td></td<>	Closed Depression		the version date(s) listed below. Soil Survey Area: Grand Staircase-Escalante National Monume
 Latidini Lava Flow Transportation Marsh or swamp Rails Mine or Quarry Interstate Highways Miscellaneous Water US Routes Perennial Water Major Roads Rock Outcrop Local Roads Sandy Spot Severely Eroded Spot Sinkhole Silde or Slip Silde or Slip Sodic Spot 	 Laiduini Contains and Canais Lava Flow Transportation Marsh or swamp Rails Mine or Quary Interstate Highways Miscellaneous Water Viscelaneous Water<td>Gravelly Spot</td><td>Oceans</td><td>Survey Area Data: Version 8, Oct 2, 2009</td>	Gravelly Spot	Oceans	Survey Area Data: Version 8, Oct 2, 2009
Marsh or swamp Interstate Highways Mine or Quarry Interstate Highways Miscellaneous Water US Routes Perennial Water Major Roads Rock Outcrop Local Roads Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot	Marsh or swamp Interstate Highways Mine or Quarry Interstate Highways Miscellaneous Water US Routes Perennial Water Major Roads Rock Outcrop Local Roads Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Sinkhole Sinkhole Sinkhole Sodic Spot Spoil Area	↓ Lava Flow	Transportation	The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background
 Miscelianeous water Perennial Water Major Roads Rock Outcrop Local Roads Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 	 Miscellaheous Water Perennial Water Major Roads Rock Outcrop Local Roads Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot Spoil Area 	Mine or Quarry	Interstate Highways	imagery displayed on these maps. As a result, some minor shiftin of map unit boundaries may be evident.
 Rock Outprop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 	 Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot Spoil Area 	Perennial Water	Major Roads	
 Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 	 Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot Spoil Area 	+ Saline Spot		
 Slide or Slip Sodic Spot 	 Slide or Slip Sodic Spot Spoil Area 	Severely Eroded Spot		
	Spoil Area	•		
	A Stony Shot	Spoil Area		

Grand Staircase-E	scalante National Monument Area, Par	ts of Kane and Garfield	Counties, Utah (UT686)
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
5140	Green River-Radnik, moist-Suwanee, saline complex, 0 to 5 percent slopes	4.5	100.0%
Totals for Area of Interest		4.5	100.0%

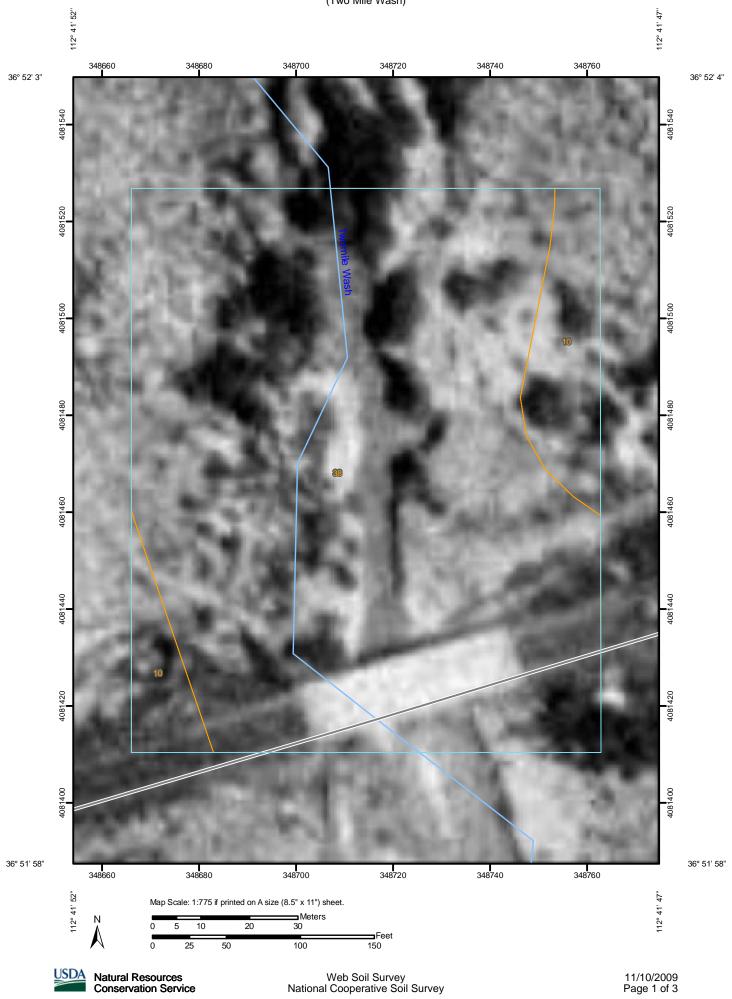
Soil Map—Coconino County Area, Arizona, North Kaibab Part; and Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (Kanab Creek at Fredonia)

11/10/2009


MAP L	EGEND	MAP INFORMATION
Area of Interest (AOI)	🗴 Very Stony Spot	Map Scale: 1:686 if printed on A size (8.5" × 11") sheet.
Area of Interest (AOI)	🛉 Wet Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils Soil Map Units	Other	Please rely on the bar scale on each map sheet for accurate map
	Special Line Features	measurements.
Special Point Features Blowout	Gully	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
Borrow Pit	Short Steep Slope	Coordinate System: UTM Zone 12N NAD83
🔀 💥 Clay Spot	or Other	This product is generated from the USDA-NRCS certified data as of
Closed Depression	Political Features	the version date(s) listed below.
🗙 Gravel Pit	• Cities	Soil Survey Area: Coconino County Area, Arizona, North Kaibab Part
Gravelly Spot	Water Features Oceans	Survey Area Data: Version 7, Oct 7, 2009
A Landfill	Streams and Canals	Soil Survey Area: Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County
↓ Lava Flow	Transportation	Survey Area Data: Version 8, Sep 10, 2008
مالد Marsh or swamp	+++ Rails	Your area of interest (AOI) includes more than one soil survey area.
🛠 Mine or Quarry	Interstate Highways	These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels
Miscellaneous Water	US Routes	of detail. This may result in map unit symbols, soil properties, and
Perennial Water	Major Roads	interpretations that do not completely agree across soil survey area boundaries.
V Rock Outcrop	Local Roads	Date(s) aerial images were photographed: 9/9/1992
+ Saline Spot		The orthophoto or other base map on which the soil lines were
Sandy Spot		compiled and digitized probably differs from the background
- Severely Eroded Spot		imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Sinkhole		
Slide or Slip		
ø Sodic Spot		
🛎 Spoil Area		
Stony Spot		

Coconino County Area, Arizona, North Kaibab Part (AZ629)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
16	Glenyon silty clay loam, 0 to 2 percent slopes	1.3	71.6%		
45	Sheppard loamy fine sand, 5 to 15 percent slopes	0.3	13.7%		
Subtotals for Soil Survey Area		1.6	85.2%		
Totals for Area of Interest		1.8	100.0%		

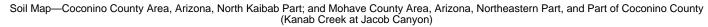
Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (AZ625)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
18	Jocity loamy fine sand, saline-sodic, 1 to 3 percent slopes	0.3	14.8%			
Subtotals for Soil Survey A	rea	0.3	14.8%			
Totals for Area of Interest		1.8	100.0%			


Soil Map—Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (Cottonwood Creek)

	MAP LEGEND			MAP INFORMATION	
Area of Ir	Area of Interest (AOI)		Very Stony Spot	Map Scale: 1:779 if printed on A size (8.5" × 11") shee	
	Area of Interest (AOI)	¥	Wet Spot	The soil surveys that comprise your AOI were mapped at 1	
Soils	Soil Map Units	L Special	Other	Please rely on the bar scale on each map sheet for accura measurements.	
ω	Point Features Blowout Borrow Pit	3pecial ~	Gully Short Steep Slope	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.go Coordinate System: UTM Zone 12N NAD83	
⊠ ※	Clay Spot	Other Political Features	This product is generated from the USDA-NRCS certified date the version date(s) listed below.		
• ×	Closed Depression Gravel Pit	O Water Fea	Cities	Soil Survey Area: Mohave County Area, Arizona, Northe Part, and Part of Coconino County	
	Gravelly Spot		Oceans	Survey Area Data: Version 8, Sep 10, 2008	
Ø	Landfill	\sim	Streams and Canals	Date(s) aerial images were photographed: 9/9/1992	
سك سك ⊗	Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water	Transpor +++ ~	tation Rails Interstate Highways US Routes	The orthophoto or other base map on which the soil lines w compiled and digitized probably differs from the backgroun imagery displayed on these maps. As a result, some minor of map unit boundaries may be evident.	
⊛ ~ +	Perennial Water Rock Outcrop Saline Spot	~	Major Roads Local Roads		
:::	Sandy Spot				
= ◊	Severely Eroded Spot Sinkhole				
3> ø	Slide or Slip Sodic Spot				
35	Spoil Area Stony Spot				

Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (AZ625)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
55	Sheppard fine sand, 1 to 7 percent slopes	2.6	100.0%		
Totals for Area of Interest		2.6	100.0%		

Soil Map—Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (Two Mile Wash)

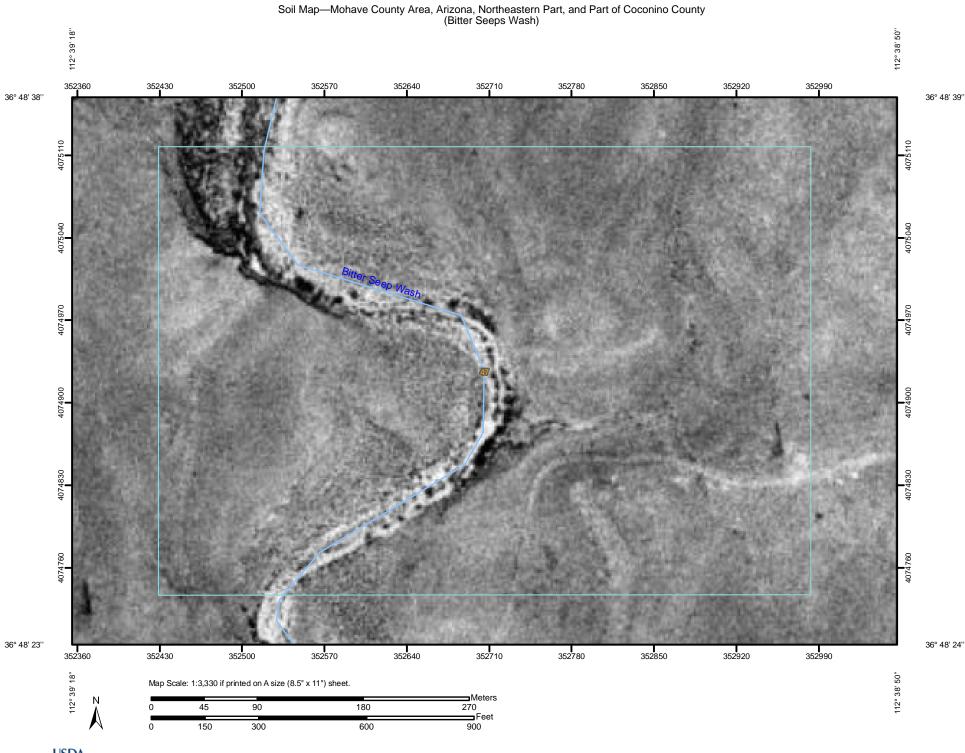


11/10/2009 Page 1 of 3

	IND	MAP INFORMATION	
Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units	 Very Stony Spot Wet Spot Other 	Map Scale: 1:775 if printed on A size (8.5" × 11") sheet. The soil surveys that comprise your AOI were mapped at 1:2 Please rely on the bar scale on each map sheet for accurate measurements.	
Soli Map Units Special Point Features	Gully Short Steep Slope Other titcal Features Cities Cities Streams and Canals nsportation H Rails Interstate Highways US Routes Major Roads Local Roads	 measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83 This product is generated from the USDA-NRCS certified data the version date(s) listed below. Soil Survey Area: Mohave County Area, Arizona, Northeas Part, and Part of Coconino County Survey Area Data: Version 8, Sep 10, 2008 Date(s) aerial images were photographed: 9/9/1992 The orthophoto or other base map on which the soil lines we compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor s of map unit boundaries may be evident. 	

Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (AZ625)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
10	Clayhole loam, 1 to 3 percent slopes	0.3	11.0%		
38	Mido loamy fine sand, 1 to 4 percent slopes, gullied	2.5	89.0%		
Totals for Area of Interest		2.8	100.0%		

112° 35' 31" 112° 35' 57" 357,470 357,890 36° 49' 40'' 36° 49' 40'' 36° 49' 25'' 36° 49' 26'' 112° 35' 30" 112° 35' 57" Map Scale: 1:3,170 if printed on A size (8.5" x 11") sheet. Meters N Feet


Natural Resources Conservation Service

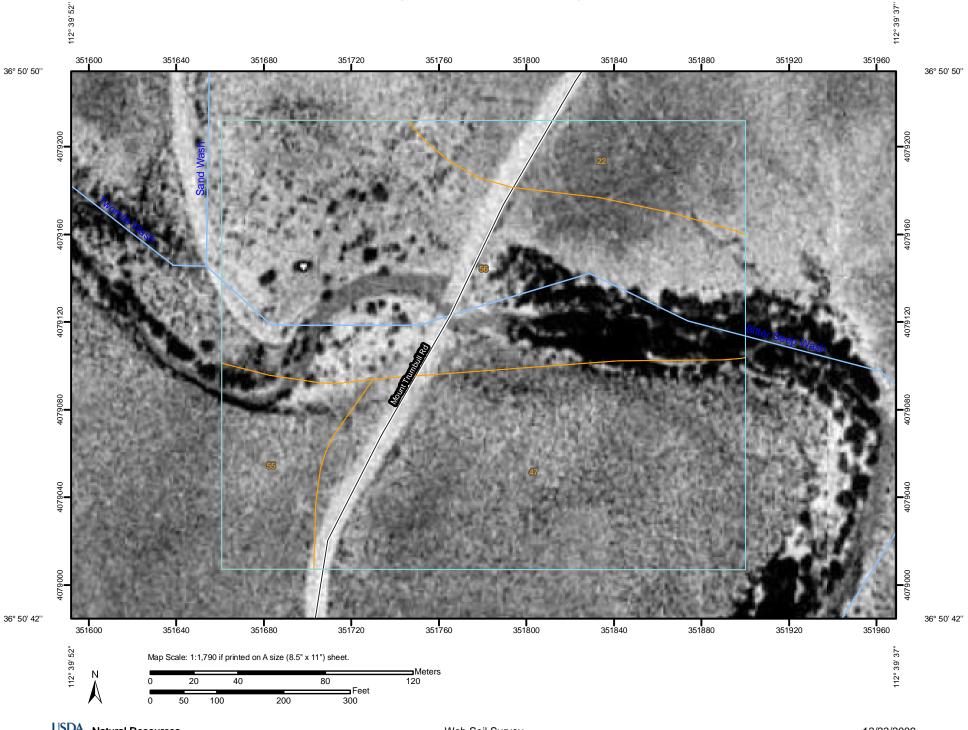
Web Soil Survey National Cooperative Soil Survey

MAP L	EGEND	MAP INFORMATION		
Area of Interest (AOI)	Very Stony Spot	Map Scale: 1:3,170 if printed on A size (8.5" × 11") sheet.		
Area of Interest (AOI)	¥ Wet Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.		
Soils Soil Map Units	▲ Other	Please rely on the bar scale on each map sheet for accurate map		
	Special Line Features	measurements.		
Special Point Features Blowout	Gully	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov		
Borrow Pit	Short Steep Slope	Coordinate System: UTM Zone 12N NAD83		
X Clay Spot	Other	This product is generated from the USDA-NRCS certified data as of		
Closed Depression	Political Features	the version date(s) listed below.		
Gravel Pit	• Cities	Soil Survey Area: Coconino County Area, Arizona, North Kaibab Part		
Gravelly Spot	Water Features Oceans	Survey Area Data: Version 7, Oct 7, 2009		
@ Landfill	Streams and Canals	Soil Survey Area: Mohave County Area, Arizona, Northeastern		
∧ Lava Flow	Transportation	Part, and Part of Coconino County Survey Area Data: Version 8, Sep 10, 2008		
ماد Marsh or swamp	+++ Rails	Your area of interest (AOI) includes more than one soil survey area.		
Mine or Quarry	Interstate Highways	These survey areas may have been mapped at different scales, with		
Miscellaneous Water	US Routes	a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and		
Perennial Water	Major Roads	interpretations that do not completely agree across soil survey area boundaries.		
Rock Outcrop	Local Roads	Date(s) aerial images were photographed: 9/9/1992		
+ Saline Spot		The orthophoto or other base map on which the soil lines were		
Sandy Spot		compiled and digitized probably differs from the background		
- Severely Eroded Spot		imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		
Sinkhole				
Slide or Slip				
ø Sodic Spot				
🛎 Spoil Area				
Stony Spot				

Coconino County Area, Arizona, North Kaibab Part (AZ629)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
10	Curhollow-Mellenthin complex, 2 to 12 percent slopes	2.0	4.4%			
43	Rock outcrop-Torriorthents complex, warm, 25 to 65 percent slopes	29.6	64.6%			
Subtotals for Soil Survey Area		31.6	69.0%			
Totals for Area of Inter	Totals for Area of Interest		100.0%			

Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (AZ625)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
47	Pennell gravelly loam, 1 to 12 percent slopes	6.9	15.0%			
65	Torriorthents-Rock outcrop complex, warm, 30 to 70 percent slopes	7.3	16.0%			
Subtotals for Soil Survey Area		14.2	31.0%			
Totals for Area of Interest		45.8	100.0%			

Natural Resources Conservation Service


Web Soil Survey National Cooperative Soil Survey

	MAP LEGEND			MAP INFORMATION	
Area of In	Area of Interest (AOI)		Very Stony Spot	Map Scale: 1:3,320 if printed on A size (8.5" × 11") sheet.	
	Area of Interest (AOI)	¥	Wet Spot	The soil surveys that comprise your AOI were mapped at 1:	
Soils	Soil Map Units		Other	Please rely on the bar scale on each map sheet for accurat measurements.	
Special ⊍ ⊠	Point Features Blowout Borrow Pit	Special No.	Line Features Gully Short Steep Slope Other	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83	
*	Clay Spot	Political F		This product is generated from the USDA-NRCS certified da the version date(s) listed below.	
* ×	Closed Depression Gravel Pit	O Water Fea	Cities atures	Soil Survey Area: Mohave County Area, Arizona, Northe Part, and Part of Coconino County	
0	Gravelly Spot Landfill	~	Oceans Streams and Canals	Survey Area Data: Version 8, Sep 10, 2008 Date(s) aerial images were photographed: 9/9/1992	
∧ *** © ● + :: = } ø	Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot Spoil Area	Transport	tation Rails Interstate Highways US Routes Major Roads Local Roads	The orthophoto or other base map on which the soil lines w compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor of map unit boundaries may be evident.	

Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (AZ625)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
47	Pennell gravelly loam, 1 to 12 percent slopes	52.1	100.0%		
Totals for Area of Interest		52.1	100.0%		

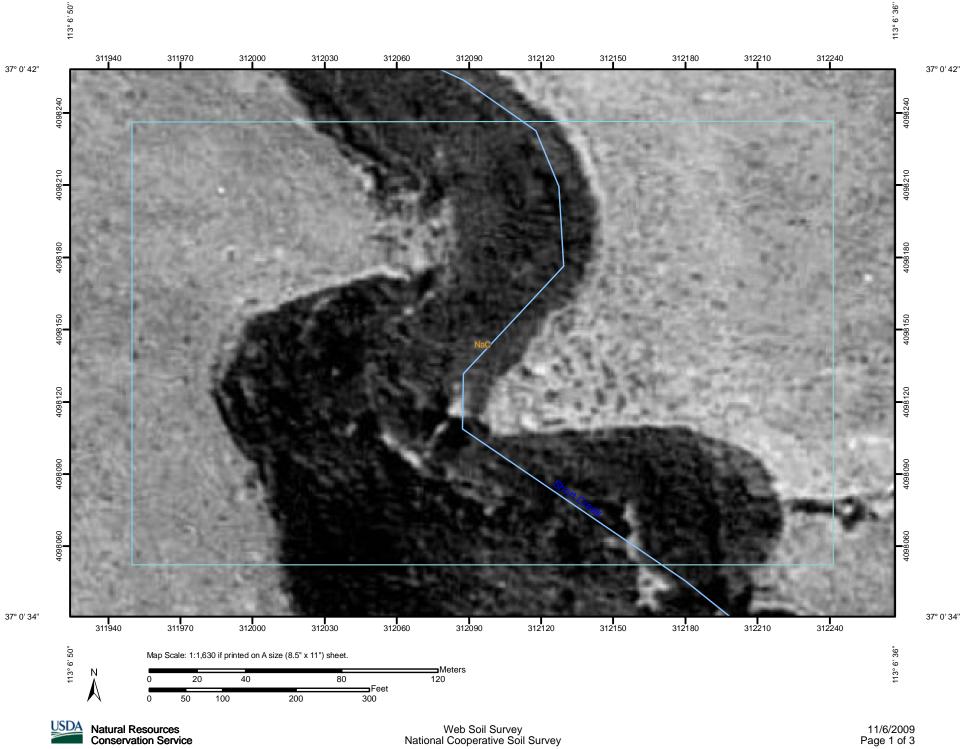
Soil Map—Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (Two Mile Wash at Mt. Trumbull Road)

MAP LEGEND				MAP INFORMATION	
Area of I	nterest (AOI)	æ	Very Stony Spot	Map Scale: 1:1,790 if printed on A size (8.5" × 11") sheet.	
	Area of Interest (AOI)	¥	Wet Spot	The soil surveys that comprise your AOI were mapped at	
Soils	Soil Map Units		Other	Please rely on the bar scale on each map sheet for accur	
	·	Special	Line Features	measurements.	
Specia (•)	I Point Features Blowout	\sim	Gully	Source of Map: Natural Resources Conservation Servic Web Soil Survey URL: http://websoilsurvey.nrcs.usda.g	
×	Borrow Pit	1.0	Short Steep Slope	Coordinate System: UTM Zone 12N NAD83	
×	Clay Spot	11	Other	This product is generated from the USDA-NRCS certified of	
*	Closed Depression	Political F		the version date(s) listed below.	
•	Gravel Pit	•	Cities	Soil Survey Area: Mohave County Area, Arizona, North	
×		Water Fea	atures Oceans	Part, and Part of Coconino County Survey Area Data: Version 8, Sep 10, 2008	
: 	Gravelly Spot Landfill		Streams and Canals	Date(s) aerial images were photographed: 9/9/1992	
۵	Lava Flow	~		The orthophoto or other base map on which the soil lines	
Λ.		Transport +++	Rails	compiled and digitized probably differs from the backgrou	
علد	Marsh or swamp	~	Interstate Highways	imagery displayed on these maps. As a result, some minc of map unit boundaries may be evident.	
*	Mine or Quarry	~	US Routes		
0	Miscellaneous Water		Major Roads		
۲	Perennial Water		Local Roads		
~	Rock Outcrop	\sim	LUCAI RUAUS		
+	Saline Spot				
	Sandy Spot				
=	Severely Eroded Spot				
\$	Sinkhole				
3>	Slide or Slip				
ø	Sodic Spot				
3	Spoil Area				
	Stony Spot				

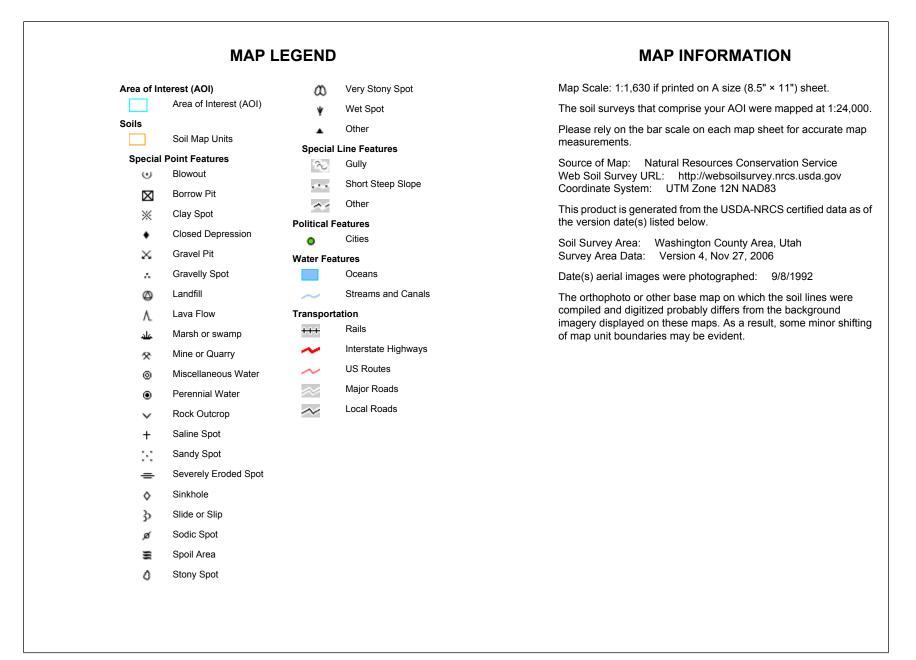
Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (AZ625)			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
22	Kinan gravelly loam, 1 to 15 percent slopes	1.3	10.4%
47	Pennell gravelly loam, 1 to 12 percent slopes	4.3	35.7%
55	Sheppard fine sand, 1 to 7 percent slopes	1.1	8.8%
56	Sheppard loamy fine sand, 1 to 4 percent slopes, gullied	5.5	45.1%
Totals for Area of Interest		12.1	100.0%

Soil Map—Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (Short Creek, Colorado City) 112° 59' 7" 112° 59' 35" 322,960 36° 59' 25'' 36° 59' 25'' Twp Ave Johnson Av 36° 59' 10'' 36° 59' 11" 112° 59' 34" 112° 59' 7" Map Scale: 1:3,270 if printed on A size (8.5" x 11") sheet. Meters Ν Feet

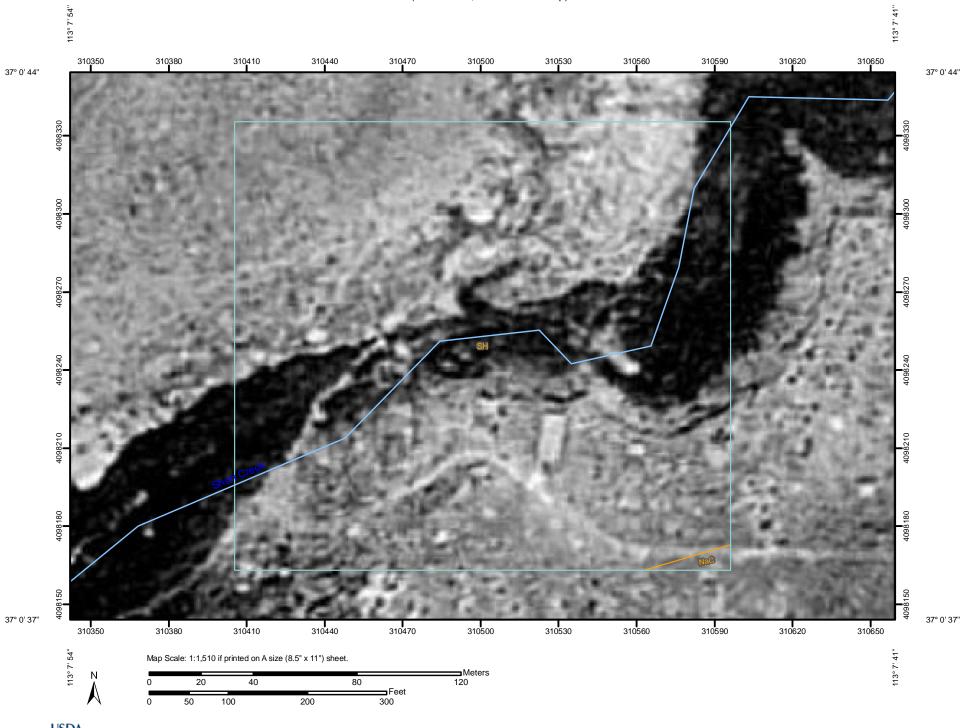
Natural Resources Conservation Service


Web Soil Survey National Cooperative Soil Survey

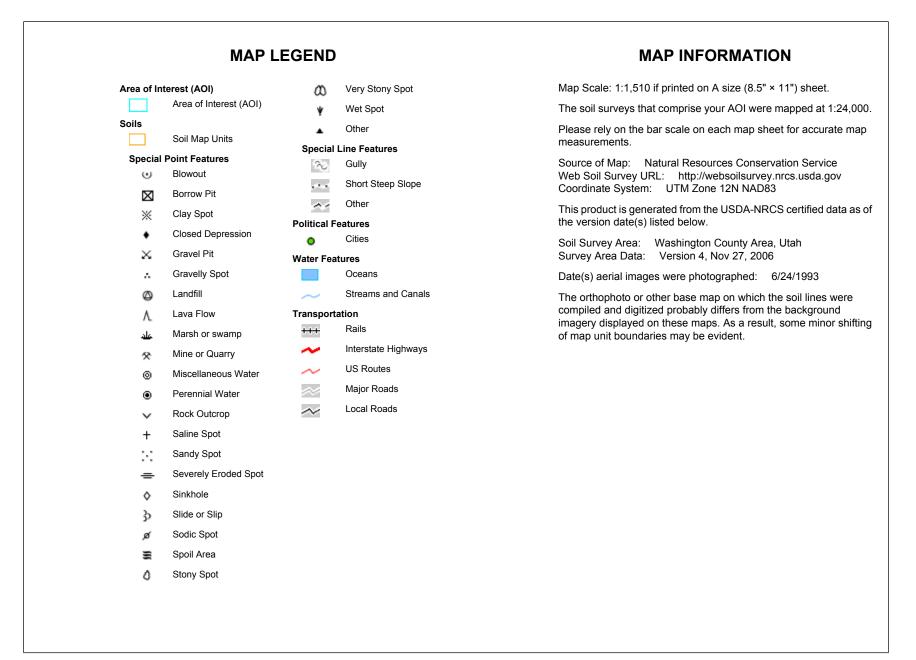
MAP LEGEND		MAP INFORMATION	
Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units Special Point Features Blowout Borrow Pit	 Very Stony Spot Wet Spot Other Special Line Features Gully Short Steep Slope 	Map Scale: 1:3,270 if printed on A size (8.5" × 11") sheet. The soil surveys that comprise your AOI were mapped at 1:24, Please rely on the bar scale on each map sheet for accurate n measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83	
➤ Clay Spot ➤ Closed Depression X Gravel Pit ∴ Gravelly Spot ☑ Landfill ∧ Lava Flow ↓ Marsh or swamp ↓ Marsh or swamp ∞ Mine or Quarry ⊚ Miscellaneous Water ● Perennial Water ∨ Rock Outcrop + Saline Spot ∴ Sandy Spot ➡ Severely Eroded Spot ◊ Slide or Slip ∅ Sodic Spot ➡ Spoil Area ◊ Stony Spot	OtherPolitical Features•CitiesWater FeaturesOceans·Streams and Canals·Streams and CanalsTransportationInterstate Highways·US Routes·Major Roads·Local Roads	This product is generated from the USDA-NRCS certified data is the version date(s) listed below. Soil Survey Area: Mohave County Area, Arizona, Northeast Part, and Part of Coconino County Survey Area Data: Version 8, Sep 10, 2008 Date(s) aerial images were photographed: 6/6/1992 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident.	


Mohave County Area, Arizona, Northeastern Part, and Part of Coconino County (AZ625)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
37	Mido fine sand, 1 to 10 percent slopes	12.7	26.4%	
38	Mido loamy fine sand, 1 to 4 percent slopes, gullied	20.7	42.9%	
44	Palma loamy fine sand, 1 to 5 percent slopes	14.8	30.7%	
Totals for Area of Interest		48.1	100.0%	

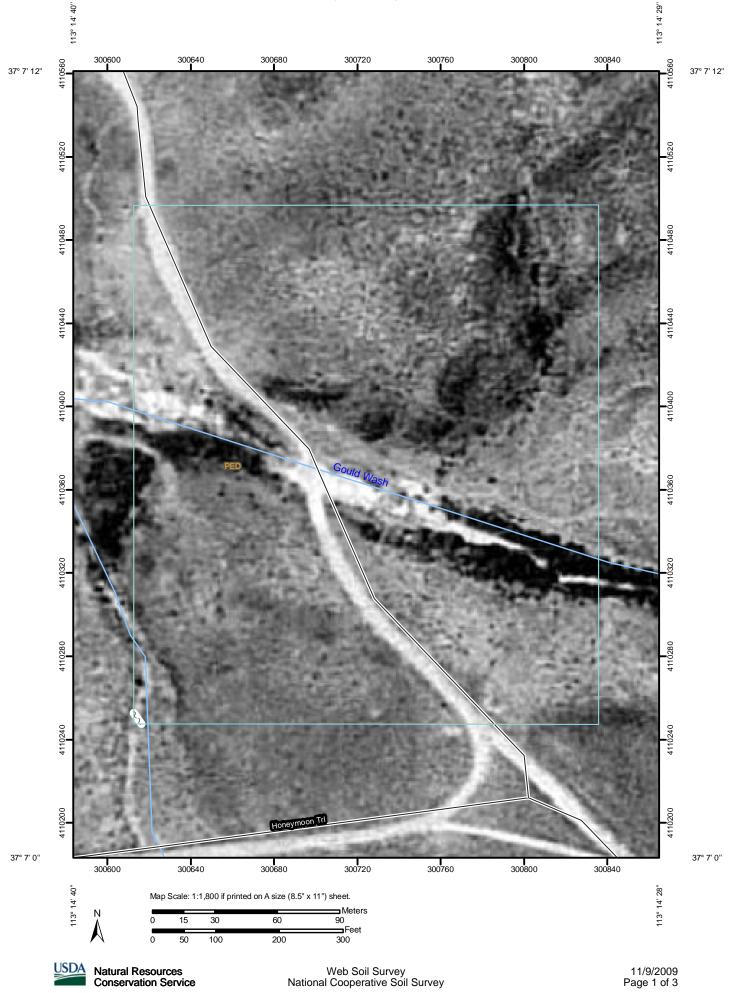
Soil Map—Washington County Area, Utah (Short Creek, East Canaan Gap)

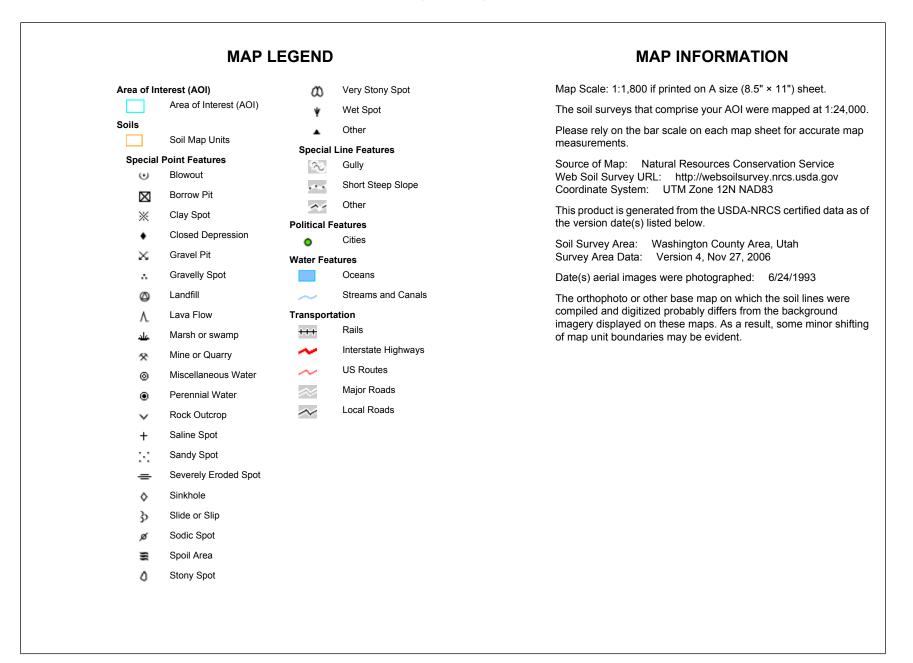


Web Soil Survey National Cooperative Soil Survey


Washington County Area, Utah (UT641)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
NaC Naplene silt loam, 2 to 6 percent slopes		13.3	100.0%	
Totals for Area of Interest		13.3	100.0%	

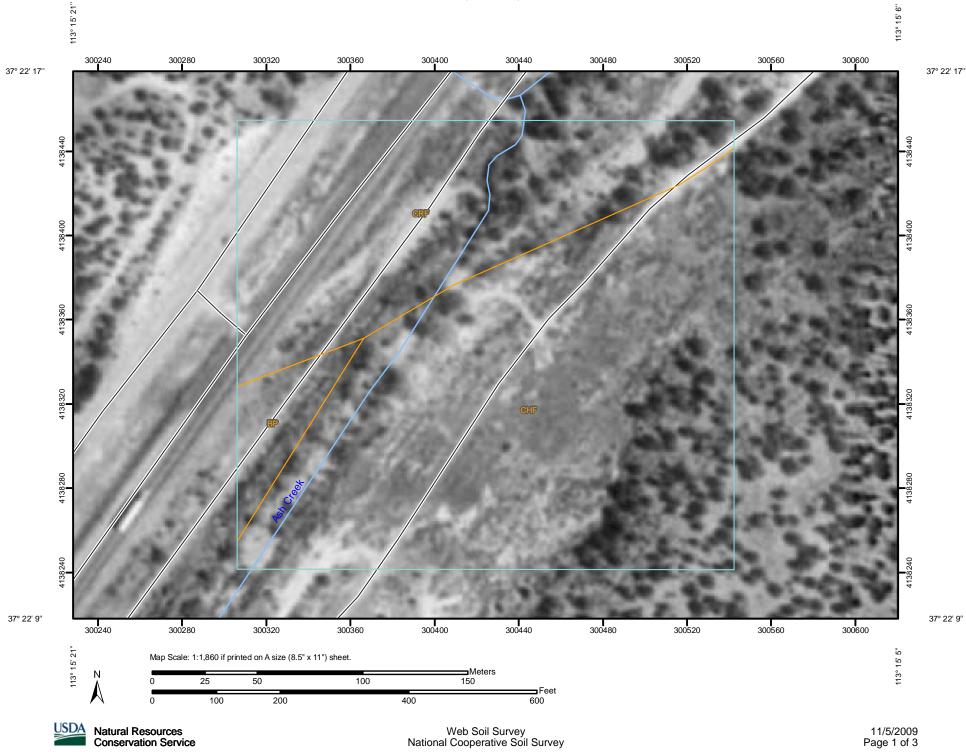
Soil Map—Washington County Area, Utah (Short Creek, West Canaan Gap)

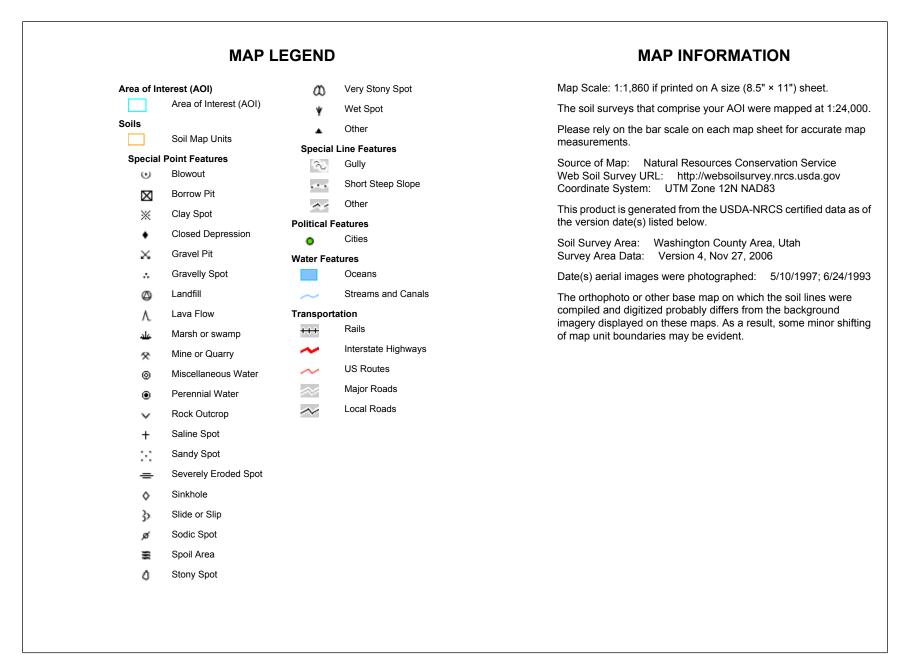

Natural Resources Conservation Service


Web Soil Survey National Cooperative Soil Survey

Washington County Area, Utah (UT641)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
NaC	Naplene silt loam, 2 to 6 percent slopes	0.0	0.5%	
SH	Schmutz loam	8.1	99.5%	
Totals for Area of Interest		8.1	100.0%	

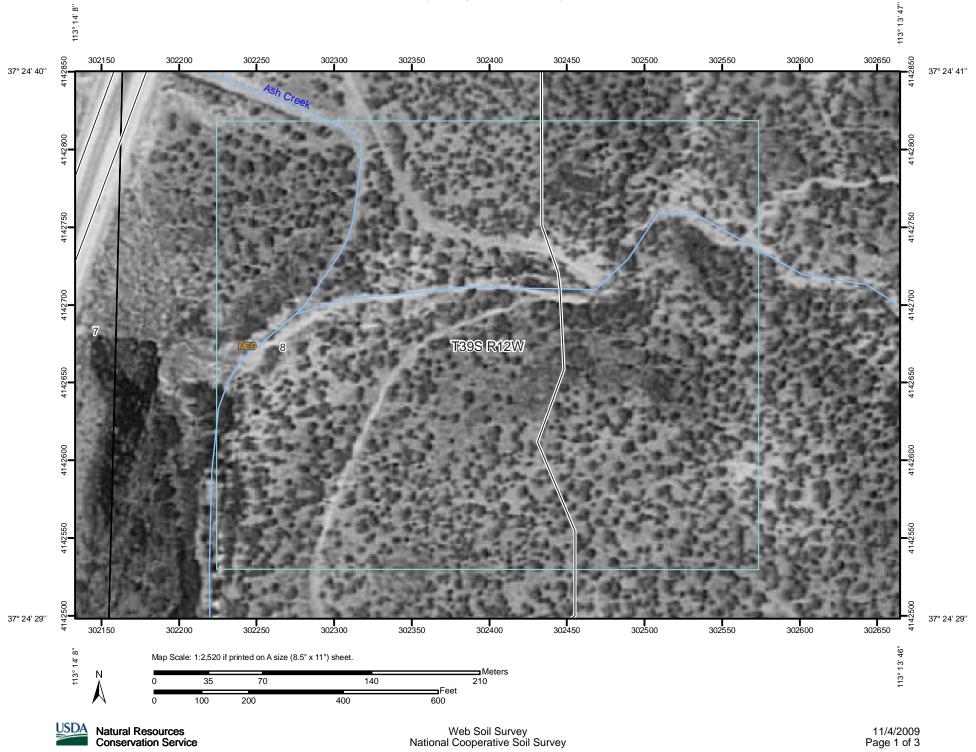
Soil Map—Washington County Area, Utah (Gould Wash)





Washington County Area, Utah (UT641)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
PED	Pastura-Esplin complex, 0 to 10 percent slopes	13.7	100.0%	
Totals for Area of Interest		13.7	100.0%	

Soil Map—Washington County Area, Utah (Ash Creek)



Web Soil Survey National Cooperative Soil Survey

Washington County Area, Utah (UT641)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
BP	Borrow pits	0.5	4.4%	
CHF	Chilton gravelly loam, 5 to 30 percent slopes	7.6	61.5%	
CRF	Collbran very cobbly clay loam, 2 to 30 percent slopes	4.2	34.1%	
Totals for Area of Interest	·	12.4	100.0%	

Soil Map—Washington County Area, Utah (Tributary East of Ash Creek)

MAP	LEGEND	MAP INFORMATION	
Area of Interest (AOI)	Very Stony Spot	Map Scale: 1:2,520 if printed on A size (8.5" × 11") sheet.	
Area of Interest (AOI)	Wet Spot	The soil surveys that comprise your AOI were mapped at 1:	
Soils Soil Map Units	Other	Please rely on the bar scale on each map sheet for accurate measurements.	
Soil Map Units Special Point Features Blowout ⊠ Borrow Pit ∴ Clay Spot Closed Depression ∴ Gravel Pit ∴ Gravelly Spot △ Landfill ∧ Lava Flow ↓ Marsh or swamp ※ Mine or Quarry ③ Miscellaneous Water ③ Perennial Water ↓ Rock Outcrop	Special Line FeaturesImage: ColspaneGullyImage: ColspaneOtherCitiesImage: ColspanePLSS Township and RangeImage: ColspanePLSS SectionCiteans and CanalsStreams and CanalsRailsImage: ColspaneInterstate HighwaysImage: ColspaneImage: Colsp	 measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83 This product is generated from the USDA-NRCS certified da the version date(s) listed below. Soil Survey Area: Washington County Area, Utah Survey Area Data: Version 4, Nov 27, 2006 Date(s) aerial images were photographed: 6/24/1993 The orthophoto or other base map on which the soil lines we compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor of map unit boundaries may be evident. 	
+ Saline Spot	Major Roads		
 Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot Spoil Area Stony Spot 	Local Roads		

Washington County Area, Utah (UT641)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
MEG	Menefee-Rock outcrop complex, 25 to 60 percent slopes	24.9	100.0%	
Totals for Area of Interest		24.9	100.0%	

APPENDIX D

PHOTOS OF

GOULD WASH WETLAND

Gould Wash Wetland

Soil cracking in Gould Wash

Soil pit (SP1) and salt deposits at Gould Wash Wetland

Appendix B Properly Functioning Conditions

Riparian/Wetland Area: Tributary East of Ash Creek

Date: 7/21/2009

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		Х	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	Х		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
Х			6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
Х			 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
	Х		9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
	Х		10) Riparian-wetland plants exhibit high vigor
	Х		11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
Х			12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
Х			13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		X	14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Cattle tracks observed in the stream bed. Stream is traversed by an unpaved road. Riparian

vegetation is fairly sparse. Channel is incised upstream of road crossing. Large boulders

downstream of the road crossing dissipate energy.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk X Nonfunctional Unknown

Trend for Functional—At Risk:

Upward Downward X Not Apparent

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

 Flow regulations		Mining activities	Upstream channel conditions
Channelization	Х	Road encroachment	Oil field water discharge
 Augmented flows		Other (specify)	

Riparian/Wetland Area:	Ash Creek
------------------------	-----------

Date: 7/21/2009

Yes	No	N/A	HYDROLOGY
	Х		1) Floodplain above bankfull is inundated in "relatively frequent" events
		X	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	X		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
Х			 6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
	X		9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
	Х		10) Riparian-wetland plants exhibit high vigor
	Х		11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
Х			13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		Х	14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

The riparian area in the study area is heavily sedimented (silt, embedded gravel/rock). Upstream and downstream areas have larger rock/boulders. Study area is adjacent to gravel pit and just downstream of drainage culverted under Interstate 15. Riparian vegetation is predominately upland with significant cover of nonnatives. Bank is gravel/rip rap in places. Channel is incised in some areas (e.g., at crest gage). The slopes west of Interstate 15 have recently burned.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk Nonfunctional X Unknown

Trend for Functional—At Risk:

Upward _____ Downward X Not Apparent _____

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

	Flow regulations		Mining activities	X	Upstream channel conditions
Х	Channelization		Road encroachm	ent	Oil field water discharge
	Augmented flows	Х	Other (specify)	sedimentation	n from gravel mining & burn

Riparian/Wetland Area: LaVerkin Creek

7/21/2009 Date:

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		Х	2) Where beaver dams are present they are active and stable
Х			 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
Х			5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
Х			6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
Х			 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
X			9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
	Х		10) Riparian-wetland plants exhibit high vigor
Х			11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
X			12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
Х			13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
Х			14) Point bars are revegetating with riparian-wetland vegetation
Х			15) Lateral stream movement is associated with natural sinuosity
Х			16) System is vertically stable
Х			17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Some side channels are not carrying water. Wetland vegetation occurs below the ordinary high

water mark in saturated areas. Unsaturated dry side channels are dominated by Melilotus.

Canopy trees are primarily native, some Russian olive and tamarisk occur at the north end of the

study area. Stream channel actively sediments and scours. West stream bank is lined with

residential lots and homes.

Summary Determination

Functional Rating:

Proper Functioning Condition X Functional—At Risk Nonfunctional Unknown

Trend for Functional—At Risk:

Upward _____ Downward _____ Not Apparent X

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes _____ No __X

Flow regulations	Mining activities	Upstream channel conditions
Channelization	Road encroachment	Oil field water discharge
Augmented flows	Other (specify)	

Riparian	/Wetland Area:	Gould W

/ash

7/22/2009 Date:

Yes	No	N/A	HYDROLOGY
	Х		1) Floodplain above bankfull is inundated in "relatively frequent" events
		Х	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	X		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
	Х		6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
	Х		9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
	Х		10) Riparian-wetland plants exhibit high vigor
	Х		11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
Х			13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		Х	14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
Х			16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Vegetation is not well developed - no large trees and sparse shrub layer. Channel is heavily

sedimented. Tamarisk are mostly senescent (bark beetle). Flow appears restricted to channel. Rushes occur in the channel and are vigorous. Other riparian vegetation is not vigorous.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk Nonfunctional X Unknown

Trend for Functional—At Risk:

Upward Downward X Not Apparent

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

 Flow regulations		Mining activities	Upstream channel conditions
Channelization	Х	Road encroachment	Oil field water discharge
 Augmented flows		Other (specify)	

Riparian/Wetland Area: Short Creek, West Canaan Gap

Date: 7/22/2009

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		X	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	X		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
	Х		6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
	Х		9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
	Х		10) Riparian-wetland plants exhibit high vigor
	Х		11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
	Х		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		Х	14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Creek is traversed by road. Heavy cattle use in creek. Very little vegetation in understory. Steep

sided with loose soils on banks.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk Nonfunctional X Unknown

Trend for Functional—At Risk:

Upward _____ Downward X Not Apparent _____

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

 Flow regulations		Mining activities	Upstream channel conditions
Channelization	Χ	Road encroachment	Oil field water discharge
Augmented flows	Х	Other (specify) cattle use	

Riparian/Wetland Area: Short Creek, East Canaan Gap

Date: 7/22/2009

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		X	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	X		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
	Х		6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
	Х		9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
	Х		10) Riparian-wetland plants exhibit high vigor
	Х		11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
	Х		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		Х	14) Point bars are revegetating with riparian-wetland vegetation
Х			15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Appears to be large amount of sediment transport. Area is heavily used by livestock. Channel is

braided in confined valley. Debris and watermarks ~1' high on riparian shelf. Some undercutting of steep walls in high flow events.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk Nonfunctional X Unknown

Trend for Functional—At Risk:

Upward _____ Downward X Not Apparent _____

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

 Flow regulations		Mining activities	Upstream channel conditions
Channelization		Road encroachment	Oil field water discharge
 Augmented flows	Х	Other (specify) cattle use	

Riparian/Wetland Area: Short Creek, Colorado City

7/22/2009 Date:

Yes	No	N/A	HYDROLOGY
	Х		1) Floodplain above bankfull is inundated in "relatively frequent" events
		Х	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	Х		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
	Х		6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
	X		9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
Х			10) Riparian-wetland plants exhibit high vigor
	Х		11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
	Х		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		Х	14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Streambed is sandy, loose soil, very disturbed. Used as a road (recreationally). No vegetation

in or adjacent to the channel. Little to no emergent vegetation in the riparian area. Willow and Russian olive are vigorous on the margins.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk Nonfunctional X Unknown

Trend for Functional—At Risk:

Upward _____ Downward X Not Apparent _____

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

	Flow regulations		Mining activities	 Upstream channel conditions	
	Channelization	Χ	Road encroachment	Oil field water discharge	
	Augmented flows		Other (specify)		

Riparian/Wetland Area: Bitter Seeps Wash

Date: 7/22/2009

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		Х	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
X			5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
	Х		6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
Х			9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
Х			10) Riparian-wetland plants exhibit high vigor
	Х		11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
	Х		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		Х	14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

The site is in BLM ACEC. Cattle tracks in wash. Soil is fine sand. Significant sediment movement

in channel. Steep incised banks. High debris lines - ~5' above channel surface (debris in

tamarisks). Dominated by tamarisk and native vegetation. No large trees.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk X Nonfunctional Unknown

Trend for Functional—At Risk:

Upward _____ Downward _____ Not Apparent X

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

 Flow regulations		Mining activities	Upstream channel conditions
 Channelization		Road encroachment	Oil field water discharge
 Augmented flows	Х	Other (specify) cattle grazing	

Lake Powell Pipeline Properly Functioning Conditions Lotic Standard Checklist

Riparian/Wetland Area: Kanab Creek at Jacob Creek

Date: 7/23/2009

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		Х	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
Х			5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
	Х		6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
Х			 Species present indicate maintenance of riparian-wetland soil moisture characteristics
X			9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
Х			10) Riparian-wetland plants exhibit high vigor
Х			11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
Х			13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		Х	14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Substrate is loose, channel probably experiences significant scour. Channal is narrow. Floodplain

has two shelves. Vegetation is dominated by tamarisk and coyote willow - no large trees in this area. Cattle can access the creek, but no evidence was observed. Kanab Creek is dry in the summer in the study area because of upstream diversions.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk X Nonfunctional Unknown

Trend for Functional—At Risk:

Upward _____ Downward _____ Not Apparent X

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

 Flow regulations		Mining activities	Upstream channel conditions
 Channelization		Road encroachment	Oil field water discharge
 Augmented flows	Х	Other (specify) M&I a	nd irrigation diversions, cattle access

Lake Powell Pipeline Properly Functioning Conditions Lotic Standard Checklist

Riparian/Wetland Area: Two Mile Wash Access Road

Date: 7/23/2009

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		Х	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	X		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
	Х		6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
	X		9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
Х			10) Riparian-wetland plants exhibit high vigor
	Х		11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
	Х		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		Х	14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Road cuts through the wash. Lots of sediment movement. Incised banks. Cattle in drainage.

Vegetation is sparse, dominated by tamarisk. No large trees.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk Nonfunctional X Unknown

Trend for Functional—At Risk:

Upward _____ Downward X Not Apparent _____

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes	
No	

 Flow regulations		Mining activities	Upstream channel conditions	
Channelization	Х	Road encroachment	Oil field water discharge	
Augmented flows	Х	Other (specify) cattle use		

Lake Powell Pipeline Properly Functioning Conditions Lotic Standard Checklist

Riparian/Wetland Area: Two Mile Wash

Date: 7/23/2009

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		X	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	X		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
	Х		6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
	X		9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
Х			10) Riparian-wetland plants exhibit high vigor
	Х		11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
	Х		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
X			14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Tamarisk dominates riparian area (~40% cover on average). Spare herbaceous layer is primarily

nonnative. Channel is incised, but there are multiple channels and two shelves with a wide tamarisk corridor on the higher shelf. Cattle use.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk Nonfunctional X Unknown

Trend for Functional—At Risk:

Upward _____ Downward X_____ Not Apparent _____

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

 Flow regulations		Mining activities	Upstream channel conditions
Channelization		Road encroachment	Oil field water discharge
Augmented flows	Х	Other (specify) cattle use	_

Lake Powell Pipeline **Properly Functioning Conditions** Lotic Standard Checklist

Riparian/Wetland Area: Cottonwood Creek

7/23/2009 Date:

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		Х	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	Х		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
	Х		6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
Х			 Species present indicate maintenance of riparian-wetland soil moisture characteristics
X			9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
Х			10) Riparian-wetland plants exhibit high vigor
Х			11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
	Х		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		Х	14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Channel is small, shallow, with very dense tamarisk in the riparian area immediately adjacent

up to incised shelf. Very spare herbaceous cover, dominated by nonnative species. There is some minimal stream braiding. Livestock use is evident. Russian thistle dominant around the riparian area.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk X Nonfunctional Unknown

Trend for Functional—At Risk:

Upward _____ Downward _____ Not Apparent X

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

 Flow regulations		Mining activities	5	Upstream channel conditions
 Channelization		Road encroachment		Oil field water discharge
 Augmented flows	Х	Other (specify)	livestock grazir	ng

Lake Powell Pipeline Properly Functioning Conditions Lotic Standard Checklist

Riparian/Wetland Area: Kanab Cre

Kanab Creek at Fredonia

Date: 7/23/2009

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		Х	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	Х		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
Х			 6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
Х			 Species present indicate maintenance of riparian-wetland soil moisture characteristics
X			9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
Х			10) Riparian-wetland plants exhibit high vigor
Х			11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
	Х		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		Х	14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Some water marks ~2' above channel (likely flooded every year or 2). Heavy cattle use. Very

dense vigorous willow shrub cover, few large trees, herbaceaous layer is sparse and dominated by nonnatives.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk X Nonfunctional Unknown

Trend for Functional—At Risk:

Upward Downward X Not Apparent

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

 Flow regulations		Mining activities	Upstream channel conditions
Channelization		Road encroachment	Oil field water discharge
Augmented flows	Х	Other (specify) cattle use	_

Properly Functioning Conditions Lotic Standard Checklist

Riparia	an/Wetlar	nd Area:	Johnson Wash
	Date:		7/24/2009
ID	Team Ob	servers:	C. Jones, B. Liming, E. Zimmerman
Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		Х	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	Х		5) Upland watershed is not contributing to riparian-wetland degradation
Yes	No	N/A	VEGETATION
Х			 There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
	X		9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
Х			10) Riparian-wetland plants exhibit high vigor
	Х		11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)
Yes	No	N/A	EROSION/DEPOSITION

Yes	No	N/A	EROSION/DEPOSITION	
	Х		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy	
		Х	14) Point bars are revegetating with riparian-wetland vegetation	
	Х		5) Lateral stream movement is associated with natural sinuosity	
	Х		16) System is vertically stable	
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)	

Heavy cattle use. Area is dominated by nonnative species. Channel is straight and V-shaped.

Few large trees.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk Nonfunctional X Unknown

Trend for Functional—At Risk:

Upward _____ Downward X Not Apparent _____

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

 Flow regulations		Mining activities	Upstream channel conditions
Channelization		Road encroachment	Oil field water discharge
 Augmented flows	Х	Other (specify) cattle use	

Lake Powell Pipeline Properly Functioning Conditions Lotic Standard Checklist

Riparian/Wetland Area: White Sage Wash

Date: 7/23/2009

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		Х	2) Where beaver dams are present they are active and stable
	Х		 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	Х		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
	Х		 6) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
	Х		 Species present indicate maintenance of riparian-wetland soil moisture characteristics
	X		9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
Х			10) Riparian-wetland plants exhibit high vigor
	Х		11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
	Х		12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
	Х		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
		Х	14) Point bars are revegetating with riparian-wetland vegetation
	Х		15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

Sparse vegetation. No large trees. Very little herbaceous cover - dominated by Russian thistle.

Lots of sediment movement. Steep-walled eroding side slopes. Livestock use of study area.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk Nonfunctional X Unknown

Trend for Functional—At Risk:

Upward Downward Not Apparent X

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

	Flow regulations		Mining activities	Upstream channel conditions
Х	Channelization		Road encroachment	Oil field water discharge
	Augmented flows	Х	Other (specify) Livestock gra	zing and use

Lake Powell Pipeline Properly Functioning Conditions Lotic Standard Checklist

Date: 7/24/2009

Yes	No	N/A	HYDROLOGY
Х			1) Floodplain above bankfull is inundated in "relatively frequent" events
		X	2) Where beaver dams are present they are active and stable
Х			 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region)
	Х		4) Riparian-wetland area is widening or has achieved potential extent
	X		5) Upland watershed is not contributing to riparian-wetland degradation

Yes	No	N/A	VEGETATION
Х			 There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		7) There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
Х			 Species present indicate maintenance of riparian-wetland soil moisture characteristics
X			9) Streambank vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events
Х			10) Riparian-wetland plants exhibit high vigor
Х			11) Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows
Х			12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)

Yes	No	N/A	EROSION/DEPOSITION
	Х		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy
X			14) Point bars are revegetating with riparian-wetland vegetation
Х			15) Lateral stream movement is associated with natural sinuosity
	Х		16) System is vertically stable
	Х		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)

A gravel mine is located upstream. Significant sediment movement in channel. All layers of

vegetation are present, but understory is sparse. Downstream reaches of the Paria River provide

habitat for the federally listed razerback sucker and State of Utah sensitive species

flannelmouth sucker and bluehead sucker. Significant flooding appears to mobilize large

quantities of sediments (sand and gravel) in the river channel.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk X Nonfunctional Unknown

Trend for Functional—At Risk:

Upward _____ Downward X Not Apparent _____

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

 Flow regulations	Х	Mining activities	Upstream channel conditions
Channelization		Road encroachment	Oil field water discharge
 Augmented flows		Other (specify)	

Lake Powell Pipeline **Properly Functioning Conditions** Lentic Standard Checklist

Riparian/Wetland Area: West of Blue Pool Wash

7/24/2009 Date:

Yes	No	N/A	HYDROLOGY
Х			 Riparian-wetland area is saturated at or near the surface or inundated in "relatively frequent" events
	Х		2) Fluctuation of water levels is not excessive
	Х		3) Riparian-wetland area is enlarging or has achieved potential extent
	Х		4) Upland watershed is not contributing to riparian-wetland degradation
Х			5) Water quality is sufficient to support riparian-wetland plants
	Х		6) Natural surface or subsurface flow patterns are not altered by disturbance (i.e., hoof action, dams, dikes, trails, roads, rills, gullies, drilling activities)
	Х		 Structure accomodates safe passage of flows (e.g., no headcut affecting dam or spillway)

Yes	No	N/A	VEGETATION
	Х		 There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)
	Х		 There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)
Х			10) Species present indicate maintenance of riparian-wetland soil moisture characteristics
X			11) Vegetation is comprised of those plants or plant communities that have root masses capable of withstanding wind events, wave flow events, or overland flows (e.g., storm events, snowmelt)
	Х		12) Riparian -wetland plants exhibit high vigor
X			13) Adequate riparian-wetland vegetative cover is present to protect shoreling/soil surface and dissipate energy during high wind and wave events or overland flows
Х			14) Frost or abnormal hydrologic heaving is not present
	Х		15) Favorable microsite condition (i.e., woody material, water temperature, etc.) is maintained by adjacent site characteristics

Yes	No	N/A	EROSION/DEPOSITION
Х			 Accumulation of chemicals affecting plant productivity/composition is not apparent
	Х		17) Saturation of soils (i.e., ponding, flooding frequency, and duration) is sufficient to compose and maintain hydric soils
	Х		18) Underlying geologic structure/soil material/permafrost is capable of restricting water percolation
	Х		19) Riparian-wetland is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)
	Х		20) Islands and shoreline characteristics (i.e., rocks, coarse and/or large woody material) are adequate to dissipate wind and wave event energies

This is an artificially dammed wetland area (tamarisk monoculture) created by the highway

embankment. Wetland conditions are not present in the study area. East of the pipeline

crossing (high water area) a number of standing dead tamarisk were observed with seedling recruitment. No standing water was observed during the survey. Very sandy soil with some clay ribbons.

Summary Determination

Functional Rating:

Proper Functioning Condition Functional—At Risk Nonfunctional X Unknown

Trend for Functional—At Risk:

Upward Downward Not Apparent X

Are factors contributing to unacceptable conditions outside the control of the manager?

Yes X No

Dewatering		Mining activities	 Watershed condition
Dredging activities	Х	Road encroachment	 Land ownership
Other (specify)			

Appendix C Riparian Area Functional Assessment Data Sheets

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/21/2009 Wetland/Riparian Area: **Tributary East of Ash Creek** State/County: Washington County, Utah Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Upper Virgin Legal (TRS): T39S R12W S08 Assessment Area (AA) Size 0.06 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

 $Entrenchment \ ratio < 1.4 \ Width/depth \ ratio < 12 \ Gradient > .04$

X G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio <1.4 Width/depth ratio < 12 Gradient ≥.02

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/S		S/D		S/S		I/D		I/S		None	
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*		P/D		P/S		S/D		S/S		I/D		I/S		ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	Μ	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	н	Н

AA Rating: H

Plant Community Composition (visual estimate)

Do you find al	l layers of vegetation that are expe	cted for this wetland typ	pe (Y/N)?	Y	
What is the pe	rcent ground cover (within the AA)) dominated by native v	vetland vegetation?		
	High <u>></u> 80%,	Moderate 7	79-60%,	Х	Low < 60%
What is the pe	rcent of native wetland plants to no	on-native or non-wetlan	d plants observed?		
	$\mathrm{High} \ge 80\%,$	X Moderate 7	79-60%,		Low < 60%
Layers	Y			N	

Layers		1												IN					
Cover		Н			М			L			Η			М			L		
Native Wetland Species	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L	
			-																

AA Rating: 0.3 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			М			Н	
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			<u>.</u>
AA Rating:	0.2	L							

AA (from above)

Н

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating		1H			.6M			.2L	
Modified									
Rating									
Value									
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L

Modified AA Rating: 0).2	L
-----------------------	-----	---

Comments:

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA		rmane: erenni		~	easona ermitt		Temporary / Ephemeral		
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: L

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level $(H = M, M = L, L = L)$	

Modified habitat quality rating (H/N/L):

Rating

Ту	pes of fish kn			Modified I	Habitat Qual	ity (froi	m ab	ove)	
suspected within AA					Н	М		L	
Native fish	e fish			1 H .8H .6 M					.6 M
Introduced fish	roduced fish					.4 M		.3 L	
No fish					.3 L	.2 L			.1 L
Note: reduce the score by .1 if the AA has car									
.9H	.7M	.5M	.4M	- 		.2L	.1L	4	0L

L

AA Rating: 0.1 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.4	М		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Ν

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

AA Rating:	0.5	М	1								
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L			
Has the wetland's natural ability to store water been disturbed negatively?	N	Y	Ν	Y	N	Y	N	Y			
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>≥5</u>	0%	<5	50%	or si	,	phication pre	,			
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other func Minor see	AA receives or surrounding land use with potential to deliver low to moderate levels of sediments, nutrients, or compounds such that other functions are not substantially impaired. Minor sedimentation, sources of nutrients or toxicants, or signs of eutrophication present. AA is in close proximity to or receives in from or is on UDEQ list of water bodies in of TMDL development for "probable cau related to sediment, nutrients, or toxica or AA receives or surrounding land use w potential to deliver high levels of sediment nutrients, or compounds such that other functions are substantially impaired. Ma sedimentation, sources of nutrients or									

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Comments:

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Permanent Season ≥ 65% 1H .7M 64% - 50% .8H .5M	
	nal
64% - 50% .8H .5M	
49% - 35% .6M .3L	
< 35% .4M .1L	

	AA Rating:	0.1	L
--	------------	-----	---

Comments:

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Has wetland experienced moderate to low level of disturbance?
 - iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- i. Is the wetland in public ownership (city, county, state or federal)?
- ii. Is there potentially a large number of viewers?
- iii. Is the viewing distance in the fore or middle grounds for most viewers?
- iv. Has the wetland experienced a moderate to low level of disturbance?
- v. Is there an absence of human structures or other human induced disturbances?
- vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Is the wetland presently used for recreation/education?
 - iii. Is the wetland 1/4 mile or less from and elementary school?
 - iv. Is the wetland five miles or less from a high school?
- + v. Is there vehicular, trail, boat or canoe access to the site?
 - vi. Has the wetland experienced a moderate to low level of disturbance?
- + vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.3	1	0.018
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.012
General Fish/Aquatic Habitat	0.1	1	0.006
General Amphibian Habitat	0	0	0
Flood Attenuation	0.4	1	0.024
Sediment/Nutrient/Toxicant Removal	0.5	1	0.03
Sediment/Shoreline Stabilization	0.1	1	0.006
Totals:	1.6	7.8	0.096

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal	
species.	Ν
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	Ν
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	
"yes"; or	N
Score of 1 functional point for Plant Community Composition; or	N
Total actual functional points > 80% (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of $\geq .9$ functional point for General Wildlife Habitat; or	N
Score of \geq .9 functional point for General Fish/Aquatic Habitat; or	
Score of >.7 <pre></pre> .8 functional point for Plant Community Composition	Ν
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	
Total actual functional points $< 30\%$ of total possible functional points	Y

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/21/2009 Wetland/Riparian Area: Ash Creek State/County: Washington County, Utah Ecoregion (USEPA Level 3): Wasatch and Uinta Mountains HUC (250k): Upper Virgin Legal (TRS): T39S R13W S25 Assessment Area (AA) Size 0.3064 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

 $Entrenchment \ ratio < 1.4 \ Width/depth \ ratio < 12 \ Gradient > .04$

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/		I/.	D	I/	S	No	one
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D D	P/	/S	S/		S/		I/.	D	I/	'S	No	ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	Μ	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	н	Н

AA Rating: H

Plant Community Composition (visual estimate)

Do you find all layers of vegetation that are expected for	or this wetland type (Y/N)?	Y	
What is the percent ground cover (within the AA) domi	inated by native wetland vegetation?		
High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
What is the percent of native wetland plants to non-nati	ve or non-wetland plants observed?		
High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
T			

Cover Native		Η			М			L			Н			М			T	
											11			11/1			L	
Wetland Species	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.2 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			М			Н	
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.2	L					8		

AA (from above)

Н

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating		1H			.6M			.2L	
Modified									
Rating									
Value									
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L

Modified AA Rating: 0).2	L
-----------------------	-----	---

Comments:

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA		rmane erenni		Seasonal / Intermittent			Temporary / Ephemeral		
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: L

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level (H = M, M = L, L = L)	

Modified habitat quality rating (H/N/L):

Rating

Ту	pes of fish kn	own or		Modified Habitat Quality (from above)							
SI	uspected within	in AA			Н	М			L		
Native fish					1 H	.8H			.6 M		
Introduced fish	1				.5 M	.4 M		.3 L			
No fish				.3 L .2 L .1				.1 L			
	Note: reduce the score by .1 if the AA has carp present.										
.9H	.7M	.5M	.4M		.3L	.2L	.1L	4	0L		

L

AA Rating: 0.1 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>≥</u> 65%	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	1	Н		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Ν

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

Within the AA, estimate % ground coverage with high to moderate surface roughness* Has the wetland's	ioxicanis,	or signs of o		50%	functions sedimentati or si	are substant on, sources	unds such th ially impaire of nutrients c phication pre	ed. Major or toxicants,
natural ability to store water been disturbed negatively?	N	Y	N	Y	N	Y	N	Y
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Comments:

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

estimate % ground coverage with high surface roughness*	Duration of surface water adjacent to rooted vegetation					
	Permanent	Seasonal				
$\geq 65\%$	1H	.7M				
64% - 50%	.8H	.5M				
49% - 35%	.6M	.3L				
< 35%	.4M	.1L				

	AA Rating:	0.7	Μ
--	------------	-----	---

Comments:

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Has wetland experienced moderate to low level of disturbance?
 - iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- i. Is the wetland in public ownership (city, county, state or federal)?
- ii. Is there potentially a large number of viewers?
- iii. Is the viewing distance in the fore or middle grounds for most viewers?
- iv. Has the wetland experienced a moderate to low level of disturbance?
- v. Is there an absence of human structures or other human induced disturbances?
- vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Is the wetland presently used for recreation/education?
 - iii. Is the wetland 1/4 mile or less from and elementary school?
 - iv. Is the wetland five miles or less from a high school?
- + v. Is there vehicular, trail, boat or canoe access to the site?
 - vi. Has the wetland experienced a moderate to low level of disturbance?
- + vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.2	1	0.06128
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.06128
General Fish/Aquatic Habitat	0.1	1	0.03064
General Amphibian Habitat	0	0	0
Flood Attenuation	1	1	0.3064
Sediment/Nutrient/Toxicant Removal	0.5	1	0.1532
Sediment/Shoreline Stabilization	0.7	1	0.21448
Totals:	2.7	7.8	0.82728

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal	. .
species.	N
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	Ν
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	
"yes"; or	N
Score of 1 functional point for Plant Community Composition; or	N
Total actual functional points > 80% (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	N
Score of \geq .9 functional point for General Fish/Aquatic Habitat; or	
Score of $>.7 \le .8$ functional point for Plant Community Composition	N
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	
Total actual functional points $< 30\%$ of total possible functional points	N

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/21/2009 Wetland/Riparian Area: LaVerkin Creek State/County: Washington County, Utah Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Upper Virgin Legal (TRS): T41S R13W S12 Assessment Area (AA) Size 0.35 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

 $Entrenchment \ ratio < 1.4 \ Width/depth \ ratio < 12 \ Gradient > .04$

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

- B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C
- X C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/	ΌD	S/		I/.	D	I/		No	one
Rating	0.9	Н	0.8	Μ	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0.8 M

Other Special Status Species

Habitat Use/Species Presence*	P/	D D	P/	/S	S /	′ D	S/		I/.	D	I/		No	ne
Rating	0.9	Η	0.8	Н	0.7	Μ	0.6	Μ	0.2	L	0.1	L	0	L

AA Rating: 0.7 M

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments: This portion of LaVerkin Creek supports listed and sensitive fish found in the Virgin River (woundfish minnow, Virgin River chub, and Virgin spinedace)

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	Н	Н

AA Rating: M

Y

Plant Community Composition (visual estimate)

Do you find all layers of vegetation that are expected for	or this wetland type (Y/N)?	Y	
What is the percent ground cover (within the AA) domi	inated by native wetland vegetation?		
High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
What is the percent of native wetland plants to non-nati	ve or non-wetland plants observed?		
High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
T			

			Y					YN										
Cover		Η			М			L			Н			М			L	
Native Wetland Species	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.2 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			Μ		Н				
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L		
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L					
AA Rating:	0.2	L									

AA (from above)

Μ

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating		1H			.6M		.2L			
Modified										
Rating										
Value										
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L	

Modified AA Rating:	0.2	L
---------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA		rmane erenni		Seasonal / Intermittent			Temporary / Ephemeral		
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating-	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: H

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one level (H = M, M = L, L = L)

Ν

Y

Modified habitat quality rating (H/N/L):

Rating

Ty	pes of fish kn		Мо	dified	Habitat (Qual	ity (fro	om ab	ove)	
su	spected with	n AA		Н			М			L
Native fish			1 H			8H			.6 M	
Introduced fish	L			.5 M			.4 M			.3 L
No fish				.3 L	.3 L		.2 L		.1 L	
	Note:	reduce the so	core by .1	if the A	A has o	carp pres	sent.			
.9H	.7M	.5M	.4M		3L	.2L		.11	L	0L

Η

AA Rating: 1 H

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add .2.

AA Rating: 0.2

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness* Rating	<u>≥</u> 65% 1H	64%- 50% .8H	49%-35% .6M	<35% .4M
AA Rating:	0.8	Н]	

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Y

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

negatively? Rating	N 1H	.9Н	.8H	.7M	.6M	.5M	.4M	.3L			
negatively?	N	Y	11	1	11	1	14	1			
Has the wetland's natural ability to store water been disturbed			N	Y	N	Y	N	Y			
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>></u> 5	<u>≥ </u> 50%		0%	<u>≥</u> 5	0%	<50%				
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other func Minor see	tives or surro to deliver lov , nutrients, o tions are not dimentation, or signs of e	w to moderate or compound substantially sources of r	te levels of s such that y impaired. nutrients or	AA is in close proximity to or receives input from or is on UDEQ list of water bodies in need of TMDL development for "probable causes" related to sediment, nutrients, or toxicants or AA receives or surrounding land use with potential to deliver high levels of sediments, nutrients, or compounds such that other functions are substantially impaired. Major sedimentation, sources of nutrients or toxicants or signs of eutrophication present.						

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Permanent Season ≥ 65% 1H .7M 64% - 50% .8H .5M	
	nal
64% - 50% .8H .5M	
49% - 35% .6M .3L	
< 35% .4M .1L	

	AA Rating:	0.8	Н
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
- + ii. Has wetland experienced moderate to low level of disturbance?
 - iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- i. Is the wetland in public ownership (city, county, state or federal)?
- ii. Is there potentially a large number of viewers?
- iii. Is the viewing distance in the fore or middle grounds for most viewers?
- iv. Has the wetland experienced a moderate to low level of disturbance?
- v. Is there an absence of human structures or other human induced disturbances?
- vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Is the wetland presently used for recreation/education?
 - iii. Is the wetland 1/4 mile or less from and elementary school?
- + iv. Is the wetland five miles or less from a high school?
- + v. Is there vehicular, trail, boat or canoe access to the site?
- + vi. Has the wetland experienced a moderate to low level of disturbance?

vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.2	1	0.07
Listed/Proposed T&E Species Habitat	0.8	0.9	0.28
Other Special Status Species Habitat	0.7	0.9	0.245
General Wildlife Habitat	0.2	1	0.07
General Fish/Aquatic Habitat	1	1	0.35
General Amphibian Habitat	0.2	0	0.07
Flood Attenuation	0.8	1	0.28
Sediment/Nutrient/Toxicant Removal	1	1	0.35
Sediment/Shoreline Stabilization	0.8	1	0.28
Totals:	5.7	7.8	1.995

Functional Assessment Rating

% total functional points:

73%

Overall Assessment Area Category

X Red Flag Category

	Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	Y
	Category I Wetland	
	(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
	Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	N
	Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is "yes"; or	N
	Score of 1 functional point for Plant Community Composition; or	N
	Total actual functional points > 80% (round to nearest whole #) of total possible functional points.	N
	Category II Wetland	
X	(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go to Category IV)	
	Score of $\geq .9$ functional point for General Wildlife Habitat; or	N
	Score of \geq .9 functional point for General Fish/Aquatic Habitat; or	
	Score of $>.7 \le .8$ functional point for Plant Community Composition	N
	Total actual functional points $> 65\%$ of total possible functional points.	Y
	Category III Wetland	
	(Criteria for Categories I, II or IV not satisfied)	
	Category IV Wetland	
	(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does not satisfy criteria, place wetland in Category III)	

Total actual functional points < 30% of total possible functional points

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/22/2009 Wetland/Riparian Area: Gould Wash State/County: Washington County, Utah Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Upper Virgin Legal (TRS): T43S R12W S19 Assessment Area (AA) Size 0.6 (acres): Wetland Size in AA (acres): 0.01

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient > .04

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

X C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/		I/.	D	I/	S	No	one
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D D	P/	/S	S/		S/		I/.	D	I/	'S	No	ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	Μ	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	н	Н

AA Rating: H

Plant Community Composition (visual estimate)

Do you find all layers of vegetation that are expected for	or this wetland type (Y/N)?	Y	
What is the percent ground cover (within the AA) domi	inated by native wetland vegetation?		
High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
What is the percent of native wetland plants to non-nati	ve or non-wetland plants observed?		
High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
T			

Cover Native		Η			М			L			Н			М			T	
											11			IVI			L	
Wetland Species	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.2 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			М			Н		
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L	
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L				
AA Rating:	0.2	L					8			

AA (from above)

Н

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating		1H	.6M			.2L			
Modified									
Rating									
Value									
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L

Modified AA Rating: 0).2	L
-----------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA		rmane: erenni		~	easona ermitt		Temporary / Ephemeral		
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: L

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level $(H = M, M = L, L = L)$	

Modified habitat quality rating (H/N/L):

Rating

Ту	pes of fish kn	own or			Modified I	Habitat Qua	lity (fro	om ab	ove)	
suspected within AA H M L										
Native fish 1 H .8H									.6 M	
Introduced fish				.5 M .4 M				.3 L		
No fish			.3 L .2 L .1 L							
Note: reduce the score by .1 if the AA has carp present.										
.9H	.7M	.5M	.4M		.3L	.2L .		L	0L	

L

AA Rating: 0.1 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>≥</u> 65%	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	1	М		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Ν

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

AA Rating:	0.5	М	1								
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L			
Has the wetland's natural ability to store water been disturbed negatively?	Ν	Y	N	Y	N	Y	N	Y			
Within the AA, estimate % ground coverage with high to moderate surface roughness*	gh to ≥50%		<5	0%	sedimentati or si	on, sources	of nutrients or toxicants oblication present.				
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other funct Minor sec	o deliver low , nutrients, o ions are not limentation,	bunding land w to modera or compound substantiall sources of r eutrophicatio	te levels of s such that y impaired. nutrients or	from or is o of TMDL related to AA rece potential nutrien	n UDEQ lis developmen o sediment, r ives or surro to deliver hi ts, or compo	hity to or receives input t of water bodies in need at for "probable causes" nutrients, or toxicants or bunding land use with gh levels of sediments, bunds such that other tially impaired. Major of nutrients or toxicants				

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

estimate % ground coverage with high surface roughness*	Duration of surface water adjacent to rooted vegetation							
	Permanent	Seasonal						
$\geq 65\%$	1H	.7M						
64% - 50%	.8H	.5M						
49% - 35%	.6M	.3L						
< 35%	.4M	.1L						

	AA Rating:	0.7	Μ
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Has wetland experienced moderate to low level of disturbance?
 - iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- i. Is the wetland in public ownership (city, county, state or federal)?
- ii. Is there potentially a large number of viewers?
- iii. Is the viewing distance in the fore or middle grounds for most viewers?
- iv. Has the wetland experienced a moderate to low level of disturbance?
- v. Is there an absence of human structures or other human induced disturbances?
- vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Is the wetland presently used for recreation/education?
 - iii. Is the wetland 1/4 mile or less from and elementary school?
 - iv. Is the wetland five miles or less from a high school?
- + v. Is there vehicular, trail, boat or canoe access to the site?
 - vi. Has the wetland experienced a moderate to low level of disturbance?
- + vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.2	1	0.12
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.12
General Fish/Aquatic Habitat	0.1	1	0.06
General Amphibian Habitat	0	0	0
Flood Attenuation	1	1	0.6
Sediment/Nutrient/Toxicant Removal	0.5	1	0.3
Sediment/Shoreline Stabilization	0.7	1	0.42
Totals:	2.7	7.8	1.62

% total functional points:	35%
% total functional points:	35%

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	N
species.	IN
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	Ν
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	
"yes"; or	N
Score of 1 functional point for Plant Community Composition; or	N
Total actual functional points > 80% (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	N
Score of \geq .9 functional point for General Fish/Aquatic Habitat; or	
Score of >.7 <pre></pre> .8 functional point for Plant Community Composition	N
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	
Total actual functional points $< 30\%$ of total possible functional points	N

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/22/2009 Wetland/Riparian Area: Short Creek, West Canaan Gap State/County: Washington County, Utah Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Fort Pierce Wash Legal (TRS): T43N R11W S30 Assessment Area (AA) Size 0.49 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient > .04

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/		I/.	D	I/	S	No	one
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D D	P/	/S	S/		S/		I/.	D	I/	'S	No	ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	Μ	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	н	Н

AA Rating: H

Plant Community Composition (visual estimate)

Do you find all	Do you find all layers of vegetation that are expected for this wetland type (Y/N)?					
What is the per	etland vegetation?					
	High <u>></u> 80%,	Moderate 79	9-60%, X	Low < 60%		
What is the per	rcent of native wetland plants to n	on-native or non-wetland	plants observed?			
	$\mathrm{High} \ge 80\%,$	Moderate 79	9-60%, X	Low < 60%		
Lavers	V		Ν			

Cover H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L H M L L L L L M M <th>Layers</th> <th></th> <th></th> <th></th> <th></th> <th>Y</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>IN</th> <th></th> <th></th> <th></th> <th></th>	Layers					Y									IN				
WetlandNNLHMLH <th>Cover</th> <th></th> <th>Н</th> <th></th> <th></th> <th>М</th> <th></th> <th></th> <th>L</th> <th></th> <th></th> <th>Н</th> <th></th> <th></th> <th>М</th> <th></th> <th></th> <th>L</th> <th></th>	Cover		Н			М			L			Н			М			L	
Rating 1H .9H .8H .7M .6M .5M .4M .3L .2L .9H .8H .7M .6M .5M .4M .3L .2L	Wetland	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
	Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.1 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			М			Н	
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.2	L					-		

AA (from above)

Н

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating			.6M		.2L				
Modified Rating									
Value Range	1 2 Н	1.1H	1日	<u>8</u> Н	.7M	6M	4M	31	21
Kalige	1.2П	1.1П	п	.оп	./11/1	.0101	.4111	.3L	•2L

Modified AA Rating:	0.2	L
---------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA		rmane erenni		Seasonal / Intermittent			Temporary / Ephemeral		
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: L

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level $(H = M, M = L, L = L)$	

Modified habitat quality rating (H/N/L):

Rating

Ту	pes of fish kn	own or			Modified I	Habitat Qual	ity (fro	om ab	ove)		
SU	uspected within	in AA			Н	М			L		
Native fish					1 H	.8H			.6 M		
Introduced fish	Introduced fish				.5 M .4 M .3 L						
No fish					.3 L	.2 L			.1 L		
	Note:	reduce the sc	core by .	by .1 if the AA has carp present.							
.9H	.7M	.5M	.4M	1	.3L	.2L	.1I	L	0L		

L

AA Rating: 0.1 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.4	М		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Ν

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L
Has the wetland's natural ability to store water been disturbed negatively?	N	Y	N	Y	N	Y	N	Y
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>></u> 5	0%	<5	50%	<u>> 5</u>	0%	<51	0%
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other funct Minor sec	ives or surro o deliver lov , nutrients, o tions are not dimentation, or signs of o	w to modera or compound substantiall sources of	te levels of ds such that y impaired. nutrients or	from or is o of TMDL related to AA rece potential nutrien functions sedimentati	n UDEQ lis developmen o sediment, i ives or surro to deliver hi ts, or compo are substant on, sources	ity to or rece t of water bout for "probab nutrients, or to pr bunding land gh levels of s bunds such that tially impaire of nutrients of phication pre	dies in need ole causes" toxicants use with ediments, at other d. Major or toxicants,

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Permanent Season ≥ 65% 1H .7M 64% - 50% .8H .5M	
	nal
64% - 50% .8H .5M	
49% - 35% .6M .3L	
< 35% .4M .1L	

	AA Rating:	0.1	L
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

+ i. Is the wetland in public ownership (city, county, state or federal)?

ii. Has wetland experienced moderate to low level of disturbance?

iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is there potentially a large number of viewers?

iii. Is the viewing distance in the fore or middle grounds for most viewers?

iv. Has the wetland experienced a moderate to low level of disturbance?

v. Is there an absence of human structures or other human induced disturbances?

vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

+ i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is the wetland presently used for recreation/education?

iii. Is the wetland 1/4 mile or less from and elementary school?

iv. Is the wetland five miles or less from a high school?

v. Is there vehicular, trail, boat or canoe access to the site?

vi. Has the wetland experienced a moderate to low level of disturbance?

vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.1	1	0.049
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.098
General Fish/Aquatic Habitat	0.1	1	0.049
General Amphibian Habitat	0	0	0
Flood Attenuation	0.4	1	0.196
Sediment/Nutrient/Toxicant Removal	0.7	1	0.343
Sediment/Shoreline Stabilization	0.1	1	0.049
Totals:	1.6	7.8	0.784

% total functional points:	21%

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal	
species.	Ν
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	Ν
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	
"yes"; or	N
Score of 1 functional point for Plant Community Composition; or	N
Total actual functional points > 80% (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	N
Score of \geq .9 functional point for General Fish/Aquatic Habitat; or	
Score of $>.7 \le .8$ functional point for Plant Community Composition	Ν
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	
Total actual functional points $< 30\%$ of total possible functional points	Y

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/22/2009 Wetland/Riparian Area: Short Creek, East Canaan Gap State/County: Washington County, Utah Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Fort Pierce Wash Legal (TRS): T43S R11W S32 Assessment Area (AA) Size 1.2897 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

 $Entrenchment \ ratio < 1.4 \ Width/depth \ ratio < 12 \ Gradient > .04$

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*		P/S		S/D		S/S		I/D		I/S		None	
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L	

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D	P/	/S	S/	D	S/		I/.	D	I/	S	No	ne
Rating	0.9	Н	0.8	Н	0.7	М	0.6	М	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	Н	Н

AA Rating: M

Plant Community Composition (visual estimate)

Do you find all layers of vegetation that are expected for	or this wetland type (Y/N)?	Y	
What is the percent ground cover (within the AA) domi	inated by native wetland vegetation?		
High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
What is the percent of native wetland plants to non-nati	ve or non-wetland plants observed?		
High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
T			

					T									IN				
Cover		Η			М			L			Н			М			L	
Native Wetland Species	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.2 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L		Μ		Н			
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.2	L							

AA (from above)

Μ

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating	1H				.6M		.2L			
Modified										
Rating										
Value										
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L	

Modified AA Rating:	0.2	L
---------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA	Permanent / Perennial			Seasonal / Intermittent			Temporary / Ephemeral		
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: L

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level $(H = M, M = L, L = L)$	

Modified habitat quality rating (H/N/L):

Rating

Ту	pes of fish kn	own or		Modified Habitat Quality (from above)								
SU	uspected within	in AA			Н	М			L			
Native fish 1 H .8H .6 M									.6 M			
Introduced fish .5 M .4 M .3 L							.3 L					
No fish .3 L .2 L .1 L								.1 L				
Note: reduce the score by .1 if the AA has carp present.												
.9H	.7M	.5M	.4M		.3L	.2L	.1	L	0L			

L

AA Rating: 0.1 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.6	М]	

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Ν

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

AA Rating:	0.7	М	1						
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	
Has the wetland's natural ability to store water been disturbed negatively?	Ν	Y	N	Y	N	Y	N	Y	
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>>5</u>	0%	<5	50%	or si	,	of nutrients of phication pre	,	
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other funct Minor sec	AA receives or surrounding land use with potential to deliver low to moderate levels of sediments, nutrients, or compounds such that other functions are not substantially impaired. Minor sedimentation, sources of nutrients or toxicants, or signs of eutrophication present. AA is in close proximity to or receiv from or is on UDEQ list of water bodie of TMDL development for "probable related to sediment, nutrients, or to AA receives or surrounding land us potential to deliver high levels of second nutrients, or compounds such that functions are substantially impaired.							

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Duration of surface water adjacent to rooted vegetation							
Permanent	Seasonal						
1H	.7M						
.8H	.5M						
.6M	.3L						
.4M	.1L						
	1H .8H .6M						

	AA Rating:	0.3	L
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Has wetland experienced moderate to low level of disturbance?

iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is there potentially a large number of viewers?

iii. Is the viewing distance in the fore or middle grounds for most viewers?

iv. Has the wetland experienced a moderate to low level of disturbance?

v. Is there an absence of human structures or other human induced disturbances?

vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is the wetland presently used for recreation/education?

iii. Is the wetland 1/4 mile or less from and elementary school?

iv. Is the wetland five miles or less from a high school?

v. Is there vehicular, trail, boat or canoe access to the site?

vi. Has the wetland experienced a moderate to low level of disturbance?

vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Ra

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):		
Plant Community Composition	0.2	1	0.25794		
Listed/Proposed T&E Species Habitat	0	0.9	0		
Other Special Status Species Habitat	0	0.9	0		
General Wildlife Habitat	0.2	1	0.25794		
General Fish/Aquatic Habitat	0.1	1	0.12897		
General Amphibian Habitat	0	0	0		
Flood Attenuation	0.6	1	0.77382		
Sediment/Nutrient/Toxicant Removal	0.7	1	0.90279		
Sediment/Shoreline Stabilization	0.3	1	0.38691		
Totals:	2.1	7.8	2.70837		

% total functional p	oints:	27%

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	N
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	Ν
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	
"yes"; or	N
Score of 1 functional point for Plant Community Composition; or	Ν
Total actual functional points > 80% (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	N
Score of \geq .9 functional point for General Fish/Aquatic Habitat; or	
Score of $>.7 \le .8$ functional point for Plant Community Composition	N
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	
Total actual functional points < 30% of total possible functional points	Y

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/22/2009 Wetland/Riparian Area: Short Creek, Colorado City (Highway 389) State/County: Mohave County, Arizona Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Fort Pierce Wash Legal (TRS): T41N R6W S6 Assessment Area (AA) Size 0.41 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

 $Entrenchment \ ratio < 1.4 \ Width/depth \ ratio < 12 \ Gradient > .04$

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/		I/.	D	I/	S	No	one
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D	P/	/S	S/	D	S/		I/.	D	I/	S	No	ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	М	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	Н	Н

AA Rating: H

Plant Community Composition (visual estimate)

Do you find all	layers of vegetation that are expe	ected for this wetland type	(Y/N)? N	
What is the per	cent ground cover (within the AA	A) dominated by native we	tland vegetation?	
	High <u>></u> 80%,	Moderate 79	-60%, X	Low < 60%
What is the per	cent of native wetland plants to n	on-native or non-wetland	plants observed?	
	High <u>≥</u> 80%,	Moderate 79	-60%, X	Low < 60%
Lavers	V		N	

a														IN				
Cover		Η			М			L			Η			М			L	
Native Wetland Species	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.1 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			М			Н	
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.2	L					8		

AA (from above)

Н

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating		1H			.6M				
Modified									
Rating									
Value									
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L

Modified AA Rating:	0.2	L
---------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA		rmane: erenni		~	easona ermitt			npora: Ihemer	-
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: L

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level (H = M, M = L, L = L)	

Modified habitat quality rating (H/N/L):

Rating

Ту	pes of fish kn	own or			Modified I	Habitat Qua	lity (fro	om ab	ove)
SU	uspected within	in AA			Н	М			L
Native fish					1 H	.8H			.6 M
Introduced fish	1				.5 M	.4 M			.3 L
No fish					.3 L	.2 L			.1 L
Note: reduce the score by .1 if the AA has carp present.									
.9H	.7M	.5M	.4M		.3L	.2L	.1	L	0L

L

AA Rating: 0.1 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.4	М		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Y

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

AA Rating:	0.3	L						
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L
Has the wetland's natural ability to store water been disturbed negatively?	Ν	Y	N	Y	N	Y	N	Y
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>>5</u>	0%	<5	0%	or si	,	of nutrients of phication pre	·
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other funct Minor sec	o deliver low , nutrients, o tions are not dimentation,	ounding land w to moderat r compound substantially sources of n eutrophicatio	te levels of s such that y impaired. nutrients or	from or is o of TMDL related to AA rece potential nutrien functions	on UDEQ list developmen o sediment, 1 outves or surro to deliver his ts, or compo are substant	ity to or rece t of water bo t for "probab nutrients, or br bunding land gh levels of s unds such th ially impaire	dies in need ole causes" toxicants use with sediments, at other ed. Major

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Permanent Season ≥ 65% 1H .7M 64% - 50% .8H .5M	
	nal
64% - 50% .8H .5M	
49% - 35% .6M .3L	
< 35% .4M .1L	

	AA Rating:	0.1	L
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Has wetland experienced moderate to low level of disturbance?
 - iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- i. Is the wetland in public ownership (city, county, state or federal)?
- ii. Is there potentially a large number of viewers?
- iii. Is the viewing distance in the fore or middle grounds for most viewers?
- iv. Has the wetland experienced a moderate to low level of disturbance?
- v. Is there an absence of human structures or other human induced disturbances?
- vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
- + ii. Is the wetland presently used for recreation/education?
 - iii. Is the wetland ¹/₄ mile or less from and elementary school?
 - iv. Is the wetland five miles or less from a high school?
- v. Is there vehicular, trail, boat or canoe access to the site?
 vi. Has the wetland experienced a moderate to low level of disturbance?
- + vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.1	1	0.041
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.082
General Fish/Aquatic Habitat	0.1	1	0.041
General Amphibian Habitat	0	0	0
Flood Attenuation	0.4	1	0.164
Sediment/Nutrient/Toxicant Removal	0.3	1	0.123
Sediment/Shoreline Stabilization	0.1	1	0.041
Totals:	1.2	7.8	0.492

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	N
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of $\geq .8$ for Other Special Status Species and level of disturbance is rated low; or	N
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	IN IN
"yes"; or	N
Score of 1 functional point for Plant Community Composition; or	N
Total actual functional points $> 80\%$ (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	N
Score of <a>!> 9 functional point for General Fish/Aquatic Habitat; or	
Score of $>$.7 \leq .8 functional point for Plant Community Composition	Ν
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	
Total actual functional points $< 30\%$ of total possible functional points	Y

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/22/2009 Wetland/Riparian Area: **Bitter Seeps Wash** State/County: Mohave County, Arizona Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Kanab Legal (TRS): T39N R3W S6 Assessment Area (AA) Size 0.39 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient > .04

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow
 Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/		I/.	D	I/	S	No	one
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D	P/	/S	S/	D	S/		I/.	D	I/	S	No	ne
Rating	0.9	Н	0.8	Н	0.7	М	0.6	М	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	Н	Н

AA Rating: M

Plant Community Composition (visual estimate)

Do you find all	layers of vegetation that are expe	ected for this wetland type	(Y/N)? N	
What is the per	cent ground cover (within the AA	A) dominated by native we	tland vegetation?	
	High <u>></u> 80%,	Moderate 79	-60%, X	Low < 60%
What is the per	cent of native wetland plants to n	on-native or non-wetland	plants observed?	
	High <u>≥</u> 80%,	Moderate 79	-60%, X	Low < 60%
Lavers	V		N	

Layers					1									IN				
Cover		Η			М			L			Н			М			L	
Native Wetland Species	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.1 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			Μ			Н	
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.2	L							

AA (from above)

Μ

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating		1H			.6M				
Modified									
Rating									
Value									
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L

Modified AA Rating:	0.2	L
---------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA	Permanent / Perennial			~	easona ermitt		Temporary / Ephemeral		
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: L

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level $(H = M, M = L, L = L)$	

Modified habitat quality rating (H/N/L):

Rating

Types of fish known or Modified Habitat Quality (from above)									
SU	uspected within	in AA			Н	М			L
Native fish1 H.8H.6 M									
Introduced fish .5 M .4 M .3 L									.3 L
No fish .3 L .2 L .1 L									
Note: reduce the score by .1 if the AA has carp present.									
.9H	.7M	.5M	.4M			.2L .1		L	0L

L

AA Rating: 0.1 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.4	М		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Ν

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

negatively? Rating	N 1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L
negatively?	N	1						
Has the wetland's natural ability to store water been disturbed		Y	N	Y	N	Y	N	Y
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>> 5</u>	50%	<5	50%	<u>>_5</u>	50%	<51)%
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other func Minor set	vives or surro to deliver lov a, nutrients, o tions are not dimentation, or signs of a	w to modera or compound substantiall sources of	te levels of ls such that y impaired. nutrients or	from or is of of TMDL related t AA rece potential nutrien functions sedimentati	on UDEQ lis developmer o sediment, sives or surro to deliver hi ts, or compo are substan ion, sources	nity to or rece at of water boo nt for "probab nutrients, or to or ounding land igh levels of s bunds such that tially impaire of nutrients of phication pre	dies in need ole causes" toxicants use with ediments, at other d. Major or toxicants,

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Permanent Season ≥ 65% 1H .7M 64% - 50% .8H .5M	
	nal
64% - 50% .8H .5M	
49% - 35% .6M .3L	
< 35% .4M .1L	

	AA Rating:	0.1	L
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
- + ii. Has wetland experienced moderate to low level of disturbance?
 - iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- i. Is the wetland in public ownership (city, county, state or federal)?
- ii. Is there potentially a large number of viewers?
- iii. Is the viewing distance in the fore or middle grounds for most viewers?
- iv. Has the wetland experienced a moderate to low level of disturbance?
- v. Is there an absence of human structures or other human induced disturbances?
- vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Is the wetland presently used for recreation/education?
 - iii. Is the wetland 1/4 mile or less from and elementary school?
 - iv. Is the wetland five miles or less from a high school?
 - v. Is there vehicular, trail, boat or canoe access to the site?
- + vi. Has the wetland experienced a moderate to low level of disturbance?
 - vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.1	1	0.039
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.078
General Fish/Aquatic Habitat	0.1	1	0.039
General Amphibian Habitat	0	0	0
Flood Attenuation	0.4	1	0.156
Sediment/Nutrient/Toxicant Removal	0.8	1	0.312
Sediment/Shoreline Stabilization	0.1	1	0.039
Totals:	1.7	7.8	0.663

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	N
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of $\geq .8$ for Other Special Status Species and level of disturbance is rated low; or	N
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	IN IN
"yes"; or	N
Score of 1 functional point for Plant Community Composition; or	N
Total actual functional points $> 80\%$ (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	N
Score of <a>!> 9 functional point for General Fish/Aquatic Habitat; or	
Score of $>$.7 \leq .8 functional point for Plant Community Composition	Ν
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	
Total actual functional points $< 30\%$ of total possible functional points	Y

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/23/2009 Wetland/Riparian Area: Kanab Creek at Jacob Creek State/County: Mohave County, Arizona Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Kanab Legal (TRS): T40N R3W S34 Assessment Area (AA) Size 0.46 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

 $Entrenchment \ ratio < 1.4 \ Width/depth \ ratio < 12 \ Gradient > .04$

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

X C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/		I/.	D	I/	S	No	one
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D D	P/	/S	S/		S/		I/.	D	I/	'S	No	ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	Μ	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	Н	Н

AA Rating: M

Plant Community Composition (visual estimate)

Do you find all	layers of vegetation that are expe	ected for this wetland type (Y/N)?	Ν	
What is the per	cent ground cover (within the AA	A) dominated by native wetland vegetation?		
	High <u>></u> 80%,	Moderate 79-60%,	Х	Low < 60%
What is the per	cent of native wetland plants to ne	on-native or non-wetland plants observed?		
	High <u>≥</u> 80%,	Moderate 79-60%,	х	Low < 60%
Lovers	V		N	

Layers					Y									Ν				
Cover		Н			М			L			Н			М			L	
Native Wetland Species	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.1 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			Μ			Н	
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.2	L							

AA (from above)

Μ

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating		1H			.6M			.2 L	
Modified									
Rating									
Value									
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L

	Modified AA Rating:	0.4	Μ
--	---------------------	-----	---

Comments: Wildlife tracks were observed in the area.

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA		rmane erenni		~ .	easona ermitt			nporai Ihemei	5
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating-	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian	Н	Н	Н	Н	Н	М	М	М	М
or wetland scrub-shrub or forested communities Shading: 50 to 75% of stream bank or shoreline within AA contains								IVI	101
riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: M

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one level (H = M, M = L, L = L)

Modified habitat quality rating (H/N/L): M

Rating

Ty	pes of fish kn	own or		Modified	Habitat Qua	lity (from al	pove)
su	spected with	in AA		Н	Μ		L
Native fish				1 H	.8H		.6 M
Introduced fish				.5 M	.4 M		.3 L
No fish				.3 L	.2 L		.1 L
	Note:	reduce the so	ore by .1 i	f the AA has	carp present.		
.9H	.7M	.5M	.4M	.3L	.2L	.1L	0L

AA Rating: 0.2 L

Comments: Kanab Creek is dry in the summer in the APE due to diversions.

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

N

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.4	М		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Ν

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

natural ability to store water been disturbed negatively? Rating	N 1H	Ү .9Н	N .8H	Y .7M	N .6M	Y .5M	N .4M	Y .3L
water been disturbed	N	Y	N	Y	N	Y	N	Y
Has the wetland's								
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>> </u> 5	0%	<5	0%	<u>></u> 5	0%	<5(0%
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other funct Minor sec	ives or surro o deliver lov , nutrients, o tions are not dimentation, or signs of o	w to moderator or compound substantiall sources of r	te levels of ls such that y impaired. nutrients or	from or is o of TMDL related to AA rece potential nutrien functions sedimentati	n UDEQ list developmen o sediment, 1 ives or surro to deliver hig ts, or compo are substant on, sources	ity to or rece t of water bout t for "probab nutrients, or to or bunding land gh levels of s unds such the cially impaire of nutrients of phication pre	dies in need ole causes" toxicants use with tediments, at other d. Major or toxicants,

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Permanent Season ≥ 65% 1H .7M 64% - 50% .8H .5M	
	nal
64% - 50% .8H .5M	
49% - 35% .6M .3L	
< 35% .4M .1L	

	AA Rating:	0.1	L
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
- + ii. Has wetland experienced moderate to low level of disturbance?
- + iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is there potentially a large number of viewers?

iii. Is the viewing distance in the fore or middle grounds for most viewers?

iv. Has the wetland experienced a moderate to low level of disturbance?

v. Is there an absence of human structures or other human induced disturbances?

vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

+ i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is the wetland presently used for recreation/education?

iii. Is the wetland 1/4 mile or less from and elementary school?

iv. Is the wetland five miles or less from a high school?

- v. Is there vehicular, trail, boat or canoe access to the site?
- + vi. Has the wetland experienced a moderate to low level of disturbance?

vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.1	1	0.046
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.4	1	0.184
General Fish/Aquatic Habitat	0.2	1	0.092
General Amphibian Habitat	0	0	0
Flood Attenuation	0.4	1	0.184
Sediment/Nutrient/Toxicant Removal	0.9	1	0.414
Sediment/Shoreline Stabilization	0.1	1	0.046
Totals:	2.1	7.8	0.966

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	N
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	N
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	
"yes"; or	Ν
Score of 1 functional point for Plant Community Composition; or	Ν
Total actual functional points > 80% (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	N
Score of <a>> .9 functional point for General Fish/Aquatic Habitat; or	
Score of >.7 <pre></pre> .8 functional point for Plant Community Composition	Ν
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	
Total actual functional points $< 30\%$ of total possible functional points	Y

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/23/2009 Wetland/Riparian Area: Two Mile Wash Access Road State/County: Mohave County, Arizona Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Kanab Legal (TRS): T40N R3W S19 Assessment Area (AA) Size 0.4 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient > .04

X G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio <1.4 Width/depth ratio < 12 Gradient ≥.02

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*		P/S		S/D		S/S		I/D		I/S		None	
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L	

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D	P/	/S	S/	D	S/		I/.	D	I/	S	No	ne
Rating	0.9	Н	0.8	Н	0.7	М	0.6	М	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	Н	Н

AA Rating: H

Plant Community Composition (visual estimate)

Do you find all	l layers of vegetation that are expe	ected for this wetland typ	e (Y/N)? N	
What is the per	rcent ground cover (within the AA	A) dominated by native w	etland vegetation?	
	High <u>></u> 80%,	Moderate 79	9-60%, X	Low < 60%
What is the per	rcent of native wetland plants to n	on-native or non-wetland	plants observed?	
	$\mathrm{High} \ge 80\%,$	Moderate 79	9-60%, X	Low < 60%
Lavers	V		Ν	

Cover H M L H M L H M L H M L <th>Layers</th> <th></th> <th></th> <th></th> <th></th> <th>Y</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>IN</th> <th></th> <th></th> <th></th> <th></th>	Layers					Y									IN				
WetlandNNLHMLH <th>Cover</th> <th></th> <th>Н</th> <th></th> <th></th> <th>М</th> <th></th> <th></th> <th>L</th> <th></th> <th></th> <th>Н</th> <th></th> <th></th> <th>М</th> <th></th> <th></th> <th>L</th> <th></th>	Cover		Н			М			L			Н			М			L	
Rating 1H .9H .8H .7M .6M .5M .4M .3L .2L .9H .8H .7M .6M .5M .4M .3L .2L	Wetland	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
	Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.1 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			М			Н		
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L	
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L				
AA Rating:	0.2	L					-			

AA (from above)

Н

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating	1H				.6M		.2L			
Modified Rating										
Value Range	1. 2 H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L	

Modified AA Rating:	0.2	L
---------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA		rmane erenni		~	easona ermitt			npora Ihemer	2
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: L

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level (H = M, M = L, L = L)	

Modified habitat quality rating (H/N/L):

Rating

Ту	pes of fish kn	own or			Modified I	Habitat Qual	ity (froi	m ab	ove)	
SI	uspected within	in AA			Н	М			L	
Native fish			1 H .8H				.6 M			
Introduced fish				.5 M .4 M				.3 L		
No fish .3 L .2 L .1 L									.1 L	
Note: reduce the score by .1 if the AA has carp present.										
.9H	.7M	.5M	.4M		.3L	.2L .1		4	0L	

L

AA Rating: 0.1 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.4	М		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Ν

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

Within the AA, estimate % ground coverage with high to moderate surface roughness* Has the wetland's natural ability to store	<u>≥5</u>	0%	<	50%		0%	ohication pre	
natural ability to store water been disturbed negatively?	N	Y	N	Y	N	Y	N	Y
negatively? Rating	N 1H	Ү .9Н	N .8H	Y .7M	N .6M	Y .5M	N .4M	Y .3L

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Permanent Season ≥ 65% 1H .7M 64% - 50% .8H .5M	
	nal
64% - 50% .8H .5M	
49% - 35% .6M .3L	
< 35% .4M .1L	

	AA Rating:	0.1	L
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Has wetland experienced moderate to low level of disturbance?

iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is there potentially a large number of viewers?

iii. Is the viewing distance in the fore or middle grounds for most viewers?

iv. Has the wetland experienced a moderate to low level of disturbance?

v. Is there an absence of human structures or other human induced disturbances?

vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is the wetland presently used for recreation/education?

iii. Is the wetland 1/4 mile or less from and elementary school?

iv. Is the wetland five miles or less from a high school?

+ v. Is there vehicular, trail, boat or canoe access to the site?

vi. Has the wetland experienced a moderate to low level of disturbance?

+ vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.1	1	0.04
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.08
General Fish/Aquatic Habitat	0.1	1	0.04
General Amphibian Habitat	0	0	0
Flood Attenuation	0.4	1	0.16
Sediment/Nutrient/Toxicant Removal	0.3	1	0.12
Sediment/Shoreline Stabilization	0.1	1	0.04
Totals:	1.2	7.8	0.48

% total functional	points:	15%

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal	
species.	Ν
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	Ν
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	
"yes"; or	N
Score of 1 functional point for Plant Community Composition; or	N
Total actual functional points > 80% (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	N
Score of \geq .9 functional point for General Fish/Aquatic Habitat; or	
Score of $>.7 \le .8$ functional point for Plant Community Composition	Ν
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	
Total actual functional points $< 30\%$ of total possible functional points	Y

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/23/2009 Wetland/Riparian Area: Two Mile Wash State/County: Mohave County, Arizona Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Kanab Legal (TRS): T40N R4W S14 Assessment Area (AA) Size 1.32 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient > .04

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow
 Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/		I/.	D	I/	S	No	one
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D	P/	/S	S/	D	S/		I/.	D	I/	S	No	ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	М	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	Н	Н

AA Rating: M

Plant Community Composition (visual estimate)

Do you find all	Ν			
What is the per	cent ground cover (within the A	A) dominated by native wetland vegetation	?	
	High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
What is the per	cent of native wetland plants to	non-native or non-wetland plants observed?)	
	High <u>≥</u> 80%,	Moderate 79-60%,	х	Low < 60%
Louisma	V.		NT	

Cover Native Wetland		Н			М			L			Η			М			L	
Species H	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating 11	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.1 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			Μ			Н	
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.2	L							

AA (from above)

Μ

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating		1H			.6M			.2L	
Modified Rating									
Value Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L

Modified AA Rating:	0.2	L
---------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA	Permanent / Perennial			Seasonal / Intermittent			Temporary / Ephemeral		
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: L

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level (H = M, M = L, L = L)	

Modified habitat quality rating (H/N/L):

Rating

Ту	pes of fish kn		Modified Habitat Quality (from above)								
SI	uspected within	in AA			Н	М L			L		
Native fish	Native fish					1 H .8H .6 M					
Introduced fish	duced fish			.5 M .4 M .3 I							
No fish	No fish					.3 L .2 L .1 L					
Note: reduce the score by .1 if the AA has carp present.											
.9H	.7M	.5M	.4M		.3L	.2L	.1L	4	0L		

L

AA Rating: 0.1 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.6	М]	

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Ν

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

AA Rating:	0.5	М	1					
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L
Has the wetland's natural ability to store water been disturbed negatively?	N	Y	Ν	Y	N	Y	N	Y
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>≥5</u>	0%	<5	50%	or si	,	phication pre	,
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other func Minor see	o deliver low , nutrients, c tions are not dimentation,	ounding land w to modera or compound substantiall sources of r eutrophicatio	te levels of ls such that y impaired. nutrients or	from or is o of TMDL related to AA rece potential nutrien functions	n UDEQ lis developmen o sediment, i ives or surro to deliver hi ts, or compo are substant	ity to or rece t of water bout for "probab nutrients, or to or bunding land gh levels of so bunds such the tially impaire of nutrients of	dies in need ole causes" coxicants use with ediments, at other d. Major

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Duration of surface water adjacent to rooted vegetation				
Permanent	Seasonal			
1H	.7M			
.8H	.5M			
.6M	.3L			
.4M	.1L			
	1H .8H .6M			

	AA Rating:	0.3	L
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Has wetland experienced moderate to low level of disturbance?

iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is there potentially a large number of viewers?

iii. Is the viewing distance in the fore or middle grounds for most viewers?

iv. Has the wetland experienced a moderate to low level of disturbance?

v. Is there an absence of human structures or other human induced disturbances?

vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is the wetland presently used for recreation/education?

iii. Is the wetland 1/4 mile or less from and elementary school?

iv. Is the wetland five miles or less from a high school?

- + v. Is there vehicular, trail, boat or canoe access to the site?
- + vi. Has the wetland experienced a moderate to low level of disturbance?
- + vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Ra

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.1	1	0.132
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.264
General Fish/Aquatic Habitat	0.1	1	0.132
General Amphibian Habitat	0	0	0
Flood Attenuation	0.6	1	0.792
Sediment/Nutrient/Toxicant Removal	0.5	1	0.66
Sediment/Shoreline Stabilization	0.3	1	0.396
Totals:	1.8	7.8	2.376

	220/
% total functional points:	23%

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	N
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	Ν
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	
"yes"; or	N
Score of 1 functional point for Plant Community Composition; or	Ν
Total actual functional points > 80% (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	Ν
Score of \geq .9 functional point for General Fish/Aquatic Habitat; or	
Score of $>.7 \le .8$ functional point for Plant Community Composition	Ν
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	
Total actual functional points $< 30\%$ of total possible functional points	Y

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/23/2009 Wetland/Riparian Area: **Cottonwood Creek** State/County: Mohave County, Arizona Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Kanab Legal (TRS): T41N R3W S25 Assessment Area (AA) Size 2.81 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

 $Entrenchment \ ratio < 1.4 \ Width/depth \ ratio < 12 \ Gradient > .04$

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/		I/.	D	I/	S	No	one
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D D	P/	/S	S/		S/		I/.	D	I/	'S	No	ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	Μ	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	н	Н

AA Rating: H

Plant Community Composition (visual estimate)

Do you find all	layers of vegetation that are exp	pected for this wetland type (Y/N)?	Ν	
What is the per	cent ground cover (within the A	A) dominated by native wetland vegetation?		
	High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
What is the per	cent of native wetland plants to	non-native or non-wetland plants observed?		
	High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
Lavora	V		NT	

Cover Native Wetland	Н			М			L			Н			М			L	
Wetland																	
Species H	I M	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating 1H	H .9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.1 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			Μ			Н	
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.2	L							

AA (from above)

Н

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating	1H				.6M		.2L			
Modified Rating										
Value Range	1. 2 H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L	

Modified AA Rating:	0.2	L
---------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA		rmane erenni		~	easona termitt			npora Ihemer	-
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: M

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level $(H = M, M = L, L = L)$	

Modified habitat quality rating (H/N/L):

Rating

Ту	pes of fish kn	own or		Modified	Habitat Qual	lity (from al	pove)			
SU	uspected with	in AA		Н М L						
Native fish			1 H .8H .6							
Introduced fish	1			.5 M	.3 L					
No fish				.3 L .2 L .						
Note: reduce the score by .1 if the AA has carp present.										
.9H	.7M	.5M	.4M	.3L	.2L	.1L	0L			

Μ

AA Rating: 0.2 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

N

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>≥</u> 65%	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	1	Н		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Ν

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

AA Rating:	0.9	Н	1					
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L
Has the wetland's natural ability to store water been disturbed negatively?	Ν	Y	N	Y	N	Y	N	Y
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>></u> 5	0%	<5	50%	or si	,	phication pre	sent.
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other funct Minor sec	ives or surro o deliver lov , nutrients, o tions are not dimentation, or signs of o	w to modera or compound substantiall sources of 1	te levels of ls such that y impaired. nutrients or	from or is o of TMDL related to AA rece potential nutrien functions	n UDEQ lis developmen o sediment, n ives or surro to deliver hi ts, or compo are substant	ity to or rece t of water bo t for "probab nutrients, or t or bunding land gh levels of s unds such the tially impaire of nutrients of	dies in need ole causes" toxicants use with rediments, at other d. Major

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

estimate % ground coverage with high surface roughness*	water adjace rooted vege	
	Permanent	Seasonal
$\geq 65\%$	1H	.7M
64% - 50%	.8H	.5M
49% - 35%	.6M	.3L
< 35%	.4M	.1L

	AA Rating:	0.7	Μ
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Has wetland experienced moderate to low level of disturbance?

iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is there potentially a large number of viewers?

iii. Is the viewing distance in the fore or middle grounds for most viewers?

iv. Has the wetland experienced a moderate to low level of disturbance?

v. Is there an absence of human structures or other human induced disturbances?

vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is the wetland presently used for recreation/education?

iii. Is the wetland 1/4 mile or less from and elementary school?

iv. Is the wetland five miles or less from a high school?

+ v. Is there vehicular, trail, boat or canoe access to the site?

vi. Has the wetland experienced a moderate to low level of disturbance?

+ vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.1	1	0.281
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.562
General Fish/Aquatic Habitat	0.2	1	0.562
General Amphibian Habitat	0	0	0
Flood Attenuation	1	1	2.81
Sediment/Nutrient/Toxicant Removal	0.9	1	2.529
Sediment/Shoreline Stabilization	0.7	1	1.967
Totals:	3.1	7.8	8.711

% total functional points:

40%

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	N
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	N
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	
"yes"; or	Ν
Score of 1 functional point for Plant Community Composition; or	N
Total actual functional points > 80% (round to nearest whole #) of total possible functional	
points.	N
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	Ν
Score of <a>> .9 functional point for General Fish/Aquatic Habitat; or	
Score of $>.7 \leq .8$ functional point for Plant Community Composition	N
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	

Total actual functional points < 30% of total possible functional points

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/23/2009 Wetland/Riparian Area: Kanab Creek at Fredonia State/County: Mohave County, Arizona Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Kanab Legal (TRS): T41N R2W S8 Assessment Area (AA) Size 1.17 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient > .04

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/		I/.	D	I/	S	No	one
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D	P/	/S	S/	D	S/		I/.	D	I/	S	No	ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	М	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	Н	Н

AA Rating: H

Plant Community Composition (visual estimate)

Do you find all layer	rs of vegetation that are ex	pected for this wetland type (Y/N)?	Ν	
What is the percent	ground cover (within the A	AA) dominated by native wetland vegetation?		
Х	High <u>≥</u> 80%,	Moderate 79-60%,	L	ow < 60%
What is the percent	of native wetland plants to	non-native or non-wetland plants observed?		
Х	High <u>≥</u> 80%,	Moderate 79-60%,	L	ow < 60%

Layers	Y							Ν										
Cover		Η			М			L			Η			М			L	
Native Wetland Species	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.11

AA Rating: 0.9 H

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			М			Н	
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.6	М							

AA (from above)

Н

н

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

H – add .2 to the wildlife habitat features AA rating

M - add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating	1H				.6M		.2L			
Modified										
Rating										
Value										
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L	

Modified AA Rating:	0.6	Μ
---------------------	-----	---

Comments: Vegetation is dominated by willow shrub. Herb and tree layers predominately nonnative.

Low <	60%
LOW	00/0

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA	Permanent / Perennial		Seasonal / Intermittent		Temporary / Ephemeral		-		
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: M

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level $(H = M, M = L, L = L)$	

Modified habitat quality rating (H/N/L):

Rating

Types of fish known or Modified Habitat Quality (from above)						above)	
SU	ispected with	in AA		Н М L			
Native fish				1 H	.8H		.6 M
Introduced fish	1			.5 M	.4 M		.3 L
No fish				.3 L	.2 L .1 L		
Note: reduce the score by .1 if the AA has carp present.							
.9H	.7M	.5M	.4M	.3L	.2L	.1L	0L

Μ

AA Rating: 0.2 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

N

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.8	Н]	

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Y

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

Has the wetland's natural ability to store water been disturbed negatively? Rating
Has the wetland's natural ability to store water been disturbed
9
Within the AA, estimate % ground coverage with high to moderate surface roughness*
Sediment, nutrient, and toxicant input levels within AA

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

coverage with high surface roughness*	Duration of surface water adjacent to rooted vegetation			
	Permanent	Seasonal		
$\geq 65\%$	1H	.7M		
64% - 50%	.8H	.5M		
49% - 35%	.6M	.3L		
< 35%	.4M	.1L		

	AA Rating:	0.5	М
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Has wetland experienced moderate to low level of disturbance?

iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is there potentially a large number of viewers?

iii. Is the viewing distance in the fore or middle grounds for most viewers?

iv. Has the wetland experienced a moderate to low level of disturbance?

v. Is there an absence of human structures or other human induced disturbances?

vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is the wetland presently used for recreation/education?

iii. Is the wetland 1/4 mile or less from and elementary school?

+ iv. Is the wetland five miles or less from a high school?

v. Is there vehicular, trail, boat or canoe access to the site?

vi. Has the wetland experienced a moderate to low level of disturbance?

vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.9	1	1.053
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.6	1	0.702
General Fish/Aquatic Habitat	0.2	1	0.234
General Amphibian Habitat	0	0	0
Flood Attenuation	0.8	1	0.936
Sediment/Nutrient/Toxicant Removal	0.5	1	0.585
Sediment/Shoreline Stabilization	0.5	1	0.585
Totals:	3.5	7.8	4.095

% total functional points:	45%

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	N
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	Ν
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	
"yes"; or	N
Score of 1 functional point for Plant Community Composition; or	Ν
Total actual functional points > 80% (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	Ν
Score of \geq .9 functional point for General Fish/Aquatic Habitat; or	
Score of >.7 <pre></pre> .8 functional point for Plant Community Composition	Ν
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	

Total actual functional points < 30% of total possible functional points

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/24/2009 Wetland/Riparian Area: Johnson Wash State/County: Kane County, Utah Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Kanab Legal (TRS): T43S R4.5W S30 Assessment Area (AA) Size 0.39 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient > .04

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/		I/.	D	I/	S	No	one
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D D	P/	/S	S/		S/		I/.	D	I/	'S	No	ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	Μ	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	н	Н

AA Rating: H

Plant Community Composition (visual estimate)

Do you find all layers of vegetation that are expected for	or this wetland type (Y/N)?	Y	
What is the percent ground cover (within the AA) domi			
High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
What is the percent of native wetland plants to non-nati	ve or non-wetland plants observed?		
High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%
T			

		YN																
Cover		Η			М			L			Н			М			L	
Native Wetland Species	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.2 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L M						Н	
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.2	L							

AA (from above)

Н

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating		1H			.6M		.2L			
Modified										
Rating										
Value										
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L	

Modified AA Rating:	0.2	L
---------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA	Permanent / Perennial			~	easona ermitt		Temporary / Ephemeral		
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: L

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level (H = M, M = L, L = L)	

Modified habitat quality rating (H/N/L):

Rating

Types of fish known or					Modified I	Habitat Qua	lity (fro	om ab	ove)		
SU	uspected within	in AA		H M L							
Native fish	Native fish					1 H .8H .6 M					
Introduced fish	ntroduced fish				.5 M	.4 M			.3 L		
No fish	No fish				.3 L	.2 L			.1 L		
Note: reduce the score by .1 if the AA has carp present.											
.9H	.7M	.5M	.4M		.3L	.2L	.1L		0L		

L

AA Rating: 0.1 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.4	М		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Y

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

AA Rating:	0.3	L							
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	
Has the wetland's natural ability to store water been disturbed negatively?	Ν	Y	N	Y	N	Y	N	Y	
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>>5</u>	0%	<5	0%	or si	,			
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other funct Minor sec	o deliver low , nutrients, o tions are not dimentation,	ounding land w to moderat r compound substantially sources of n eutrophicatio	te levels of s such that y impaired. nutrients or	AA is in close proximity to or receives inp from or is on UDEQ list of water bodies in r of TMDL development for "probable cause related to sediment, nutrients, or toxicant or AA receives or surrounding land use with potential to deliver high levels of sedimen nutrients, or compounds such that other functions are substantially impaired. Maje sedimentation, sources of nutrients or toxica or signs of eutrophication present.				

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Within the AA, estimate % ground coverage with high surface roughness*	Duration of surface water adjacent to rooted vegetation						
	Permanent	Seasonal					
$\geq 65\%$	1H	.7M					
64% - 50%	.8H	.5M					
49% - 35%	.6M	.3L					
< 35%	.4M	.1L					

	AA Rating:	0.1	L
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Has wetland experienced moderate to low level of disturbance?

iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is there potentially a large number of viewers?

iii. Is the viewing distance in the fore or middle grounds for most viewers?

iv. Has the wetland experienced a moderate to low level of disturbance?

v. Is there an absence of human structures or other human induced disturbances?

vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is the wetland presently used for recreation/education?

iii. Is the wetland 1/4 mile or less from and elementary school?

iv. Is the wetland five miles or less from a high school?

+ v. Is there vehicular, trail, boat or canoe access to the site?

vi. Has the wetland experienced a moderate to low level of disturbance?

+ vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.2	1	0.078
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.078
General Fish/Aquatic Habitat	0.1	1	0.039
General Amphibian Habitat	0	0	0
Flood Attenuation	0.4	1	0.156
Sediment/Nutrient/Toxicant Removal	0.3	1	0.117
Sediment/Shoreline Stabilization	0.1	1	0.039
Totals:	1.3	7.8	0.507

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	N
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	Ν
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is "yes"; or	N
Score of 1 functional point for Plant Community Composition; or	Ν
Total actual functional points > 80% (round to nearest whole #) of total possible functional points.	N
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	Ν
Score of <a>>.9 functional point for General Fish/Aquatic Habitat; or	N
Score of $>$.7 \leq .8 functional point for Plant Community Composition	Ν
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does not satisfy criteria, place wetland in Category III)	

Total actual functional points < 30% of total possible functional points

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/23/2009 Wetland/Riparian Area: White Sage Wash State/County: Coconino County, Arizona Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Kanab Legal (TRS): T41N R1E S7 Assessment Area (AA) Size 0.05 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient > .04

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow
 Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/		I/.	D	I/	I/S		None	
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L	

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D	P/	/S	S/	D	S/		I/.	D	I/S		None	
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	М	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	Н	Н

AA Rating: M

Plant Community Composition (visual estimate)

Do you find all	To you find all layers of vegetation that are expected for this wetland type (Y/N)?						
What is the per	cent ground cover (within the A	A) dominated by native wetland vegetation	?				
	High <u>≥</u> 80%,	Moderate 79-60%,	Х	Low < 60%			
What is the per	cent of native wetland plants to	non-native or non-wetland plants observed?)				
	High <u>≥</u> 80%,	Moderate 79-60%,	х	Low < 60%			
Louisma	V.		NT				

Cover Native Wetland		Н			М			L			Η			М			L	
Species H	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating 11	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.1 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			Μ		Н			
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L	
Wildlife habi	1H	.6M	.2L							
AA Rating:	0.2	L								

AA (from above)

Μ

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating		1H			.6M			.2L	
Modified Rating									
Value Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L

Modified AA Rating:	0.2	L
---------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA		Permanent / Perennial		Seasonal / Intermittent		Temporary / Ephemeral		-	
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating- leaved vegetation, etc.	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: L

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is	
the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable	
Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one	Ν
level $(H = M, M = L, L = L)$	

Modified habitat quality rating (H/N/L):

Rating

Types of fish known or				Modified Habitat Quality (from above)						
SU	suspected within AA H M L				L					
Native fish					1 H	.8H			.6 M	
Introduced fish	1				.5 M	.4 M			.3 L	
No fish	No fish				.3 L	.2 L .1 L			.1 L	
Note: reduce the score by .1 if the AA has carp present.										
.9H	.7M	.5M	.4N	1	.3L	.2L	.1L		0L	

L

AA Rating: 0.1 L

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add **.2**.

AA Rating: 0

Ν

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.4	М		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Ν

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

natural ability to store water been disturbed negatively? Rating	N 1H	Ү .9Н	N .8H	Y .7M	N .6M	Y .5M	N .4M	Y .3L	
water been disturbed	N	Y	N	Y	N	Y	N	Y	
Has the wetland's									
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>> </u> 5	0%	<5	0%	<u>>5</u>	0%	<5(0%	
Sediment, nutrient, and toxicant input levels within AA	AA receives or surrounding land use with potential to deliver low to moderate levels of sediments, nutrients, or compounds such that other functions are not substantially impaired. Minor sedimentation, sources of nutrients or toxicants, or signs of eutrophication present.				AA is in close proximity to or receives input from or is on UDEQ list of water bodies in need of TMDL development for "probable causes" related to sediment, nutrients, or toxicants or AA receives or surrounding land use with potential to deliver high levels of sediments, nutrients, or compounds such that other functions are substantially impaired. Major sedimentation, sources of nutrients or toxicants, or signs of eutrophication present.				

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Permanent Season ≥ 65% 1H .7M 64% - 50% .8H .5M	
	nal
64% - 50% .8H .5M	
49% - 35% .6M .3L	
< 35% .4M .1L	

	AA Rating:	0.1	L
--	------------	-----	---

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
- + ii. Has wetland experienced moderate to low level of disturbance?
- + iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is there potentially a large number of viewers?

iii. Is the viewing distance in the fore or middle grounds for most viewers?

iv. Has the wetland experienced a moderate to low level of disturbance?

v. Is there an absence of human structures or other human induced disturbances?

vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

+ i. Is the wetland in public ownership (city, county, state or federal)?

ii. Is the wetland presently used for recreation/education?

iii. Is the wetland 1/4 mile or less from and elementary school?

iv. Is the wetland five miles or less from a high school?

v. Is there vehicular, trail, boat or canoe access to the site?

vi. Has the wetland experienced a moderate to low level of disturbance?

vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.1	1	0.005
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.01
General Fish/Aquatic Habitat	0.1	1	0.005
General Amphibian Habitat	0	0	0
Flood Attenuation	0.4	1	0.02
Sediment/Nutrient/Toxicant Removal	0.9	1	0.045
Sediment/Shoreline Stabilization	0.1	1	0.005
Totals:	1.8	7.8	0.09

Overall Assessment Area Category

Red Flag Category

Х

Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	N
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of $\geq .8$ for Other Special Status Species and level of disturbance is rated low; or	N
Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is	IN IN
"yes"; or	N
Score of 1 functional point for Plant Community Composition; or	N
Total actual functional points $> 80\%$ (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	N
Score of <a>>.9 functional point for General Fish/Aquatic Habitat; or	
Score of $>$.7 \leq .8 functional point for Plant Community Composition	Ν
Total actual functional points $> 65\%$ of total possible functional points.	Ν
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does	
not satisfy criteria, place wetland in Category III)	
Total actual functional points $< 30\%$ of total possible functional points	Y

Lake Powell Pipeline Wetland/Riparian Assessment Form - Riverine Modified from UDOT

Evaluation Date: 7/24/2009 Wetland/Riparian Area: Paria River State/County: Kane County, Utah Ecoregion (USEPA Level 3): Colorado Plateau HUC (250k): Paria Legal (TRS): T42S R1W S33 Assessment Area (AA) Size 42.23 (acres): Wetland Size in AA (acres): NA

Riverine Subclass (after Rosgen)

Subclasses--Single Channel Systems: (there may be more than one subclass in the AA)

A Very steep gradient, very entrenched (no floodplain), very narrow valley, narrow channel

Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient > .04

G Deeply incised, grade control problems (headcuts), much bank erosion, high sediment supply, virtually no floodplain Entrenchment ratio < 1.4 Width/depth ratio < 12 Gradient $\geq .02$

F Entrenched, little floodplain development, low gradient, unstable banks, significant bar deposition, increasing channel width, high sediment supply, channel wide and shallow
 Entrenchment ratio < 1.5 Width/depth ratio > 12 Gradient < .02

B Narrow, gently sloping valleys, colluvial deposition from side slopes and/or structural control restrict width of floodplain but there is a small, relatively flat floodplain, low sediment supply, well-vegetated Entrenchment ratio 1.5-2.0 Width/depth ratio > 12 Gradient > .02 B Gradient < .02 B_C

C Low gradient, slightly entrenched, well-defined floodplain with terraces, point bars, cut banks, developed in alluvial material, often bare below bankfull/ cottonwood-willow complexes Entrenchment ratio > 2.0 Gradient < .02 Width/depth ratio \ge 12 C Width/depth ratio < 12 C_G

E Low gradient, narrow, deep channels in broad valleys/meadows, large floodplains, little sediment deposition, well-vegetated willow/sedges, sinuous, overhanging banks Entrenchment ratio > 2.0 Width/depth ratio < 12 Gradient < .01

Subclasses--Multichannel Systems

D Abundant sediment supply, shifting channels, very broad floodplains. Bold subclass in riparian class may have wetlands

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S /	D	S/	′S	I/.	D	I/		Nc	one
Rating	0.9	Н	0.8	Μ	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0.8 H

Other Special Status Species

Habitat Use/Species Presence*	P/	D D	P/	/S	S /	'D	S/		I/1	D	I/		No	ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	М	0.2	L	0.1	L	0	L

AA Rating: 0.7 M

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments: The Paria River provides habitat for the federally listed razerback sucker and State of Utah sensitive species flannelmouth sucker and bluehead sucker.

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	Н	Н

AA Rating: M

Y

Plant Community Composition (visual estimate)

Do you find all layers of vegetation that are expected	ed for this wetland type (Y/N)?	Y	
What is the percent ground cover (within the AA) of	dominated by native wetland vegetation?		
$\mathrm{High} \ge 80\%,$	Moderate 79-60%,	Х	Low < 60%
What is the percent of native wetland plants to non-	-native or non-wetland plants observed?		
$High \ge 80\%,$	Moderate 79-60%,	Х	Low < 60%
T T			

			Y					Ν										
Cover		Η			М			L			Н			М			L	
Native Wetland Species	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L	Н	М	L
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.9H	.8H	.7M	.6M	.5M	.4M	.3L	.2L	.1L

AA Rating: 0.2 L

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			Μ			Н	
Plant Community Rating	H H	M H	L M	H H	M M	L L	H M	M L	L L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.2	L							

AA (from above)

Μ

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating		1H			.6M				
Modified									
Rating									
Value									
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L

Modified AA Rating:	0.2	L
---------------------	-----	---

General Fish/Aquatic Habitat

Habitat Quality

Duration of surface water in AA		rmane erenni			easona ermitt			nporai Dhemei	-
Cover: % of water body in AA containing cover objects such as submerged logs, large rocks & boulders, overhanging banks, floating-	>25 %	10–2 5%		>25 %	10–2 5%	<10 %	>25 %	10–2 5%	<10 %
Shading: >75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities		Н	Н	Н	Н	М	М	М	М
Shading: 50 to 75% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	Н	М	М	М	М	М	L	L
Shading: < 50% of stream bank or shoreline within AA contains riparian or wetland scrub-shrub or forested communities	Н	М	М	М	L	L	L	L	L

AA Rating: H

Modified Habitat Quality

Is fish use of the AA precluded or significantly reduced by a culvert, dike, or other man-made structure or activity or is the water body included on the UDEQ list of water bodies in need of TMDL development with listed "Probable Impaired Uses" including cold or warm water fishery or aquatic life support (Y/N)? [If Y, reduce above rating by one level (H = M, M = L, L = L)

Ν

Ν

Modified habitat quality rating (H/N/L):

Rating

Ty	pes of fish kn	own or		Modified Habitat Quality (from above)									
su	spected withi	in AA	H M L										
Native fish				1 H	.8H		.6 M						
Introduced fish	L			.5 M	.4 M		.3 L						
No fish				.3 L	.2 L		.1 L						
	Note: reduce the score by .1 if the AA has carp present.												
.9H	.7M	.5M	.4M	.3L	.2L	.1L	0L						

Η

AA Rating: 1 H

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

If the answer is Yes, add .2.

AA Rating: 0

Hydrological/Biophysical Assessment

Flood Attenuation

This field assesses the capability of the AA to slow in channel or over bank flow during high water/flood events.

i. Within the AA, estimate % ground coverage with high surface roughness*	<u>>65%</u>	64%- 50%	49%-35%	<35%
Rating	1H	.8H	.6M	.4M
AA Rating:	0.4	М		

ii. There are residences, businesses, or other features, which may be significantly damaged by floods located within 0.5 miles downstream of the AA (Y/N):

Y

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

AA Rating:	0.4	М	1					
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L
Has the wetland's natural ability to store water been disturbed negatively?	Ν	Y	N	Y				Y
Within the AA, estimate % ground coverage with high to moderate surface roughness*	<u>5</u>	0%	<5	50%	sedimentati or si	on, sources	ially impaire of nutrients of phication pre	or toxicants,
Sediment, nutrient, and toxicant input levels within AA	potential t sediments other func Minor see	to deliver log , nutrients, c tions are not dimentation,	ounding land w to modera or compound substantiall sources of r eutrophicatio	te levels of ls such that y impaired. nutrients or	from or is o of TMDL related t AA rece potential nutrien	n UDEQ lis developmen o sediment, r ives or surro to deliver hi ts, or compo	ity to or rece t of water bo t for "probab nutrients, or pr bunding land gh levels of s unds such th	dies in need ole causes" toxicants use with sediments, at other

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Sediment/Shoreline Stabilization

This field assesses the ability of the AA to dissipate flow or wave energy in order to reduce erosion.

Within the AA, estimate % ground coverage with high surface roughness*	Duration of water adjace rooted vege	ent to
	Permanent	Seasonal
$\geq 65\%$	1H	.7M
64% - 50%	.8H	.5M
49% - 35%	.6M	.3L
< 35%	.4M	.1L

	AA Rating:	0.4	Μ
--	------------	-----	---

Comments:

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
- + ii. Has wetland experienced moderate to low level of disturbance?
 - iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- i. Is the wetland in public ownership (city, county, state or federal)?
- ii. Is there potentially a large number of viewers?
- iii. Is the viewing distance in the fore or middle grounds for most viewers?
- iv. Has the wetland experienced a moderate to low level of disturbance?
- v. Is there an absence of human structures or other human induced disturbances?
- vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Is the wetland presently used for recreation/education?
 - iii. Is the wetland 1/4 mile or less from and elementary school?
 - iv. Is the wetland five miles or less from a high school?
- + v. Is there vehicular, trail, boat or canoe access to the site?
- + vi. Has the wetland experienced a moderate to low level of disturbance?
- + vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.2	1	8.446
Listed/Proposed T&E Species Habitat	0.8	0.9	33.784
Other Special Status Species Habitat	0.7	0.9	29.561
General Wildlife Habitat	0.2	1	8.446
General Fish/Aquatic Habitat	1	1	42.23
General Amphibian Habitat	0	0	0
Flood Attenuation	0.4	1	16.892
Sediment/Nutrient/Toxicant Removal	0.4	1	16.892
Sediment/Shoreline Stabilization	0.4	1	16.892
Totals:	4.1	7.8	173.143

Functional Assessment Rating

% total functional points:

53%

Overall Assessment Area Category

X Red Flag Category

	Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	Y
	Category I Wetland	
	(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
	Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	N
	Score of 1 functional point for Flood Attenuation and answer to Flood Attenuation part ii is "yes"; or	N
	Score of 1 functional point for Plant Community Composition; or	N
	Total actual functional points > 80% (round to nearest whole #) of total possible functional points.	N
	Category II Wetland	
X	(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go to Category IV)	
	Score of \geq .9 functional point for General Wildlife Habitat; or	N
	Score of >.9 functional point for General Fish/Aquatic Habitat; or	Y
	Score of $>.7 \le .8$ functional point for Plant Community Composition	Ν
	Total actual functional points $> 65\%$ of total possible functional points.	N
	Category III Wetland	
	(Criteria for Categories I, II or IV not satisfied)	
	Category IV Wetland	
	(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does not satisfy criteria, place wetland in Category III)	

Total actual functional points < 30% of total possible functional points

Lake Powell Pipeline Wetland/Riparian Assessment Form - Depressional Modified from UDOT

Evaluation Date:7/24/2009Wetland/Riparian Area:West of Blue Pool WashState/County:Kane County, UtahEcoregion (USEPA Level 3):Colorado PlateauHUC (250k):Lower Lake PowellLegal (TRS):T43S R3E S30Assessment Area (AA) Size
(acres):1.04Wetland Size in AA (acres):NA

Depressional Wetland Subclass

Identify water class

X Ephemeral - surface water is present for brief periods in some years (<3 mo/yr) Seasonal - surface water is present for longer periods in most years (3-6 mo/yr) Semi-permanent - surface water is common to peristent in all years (6-12 mo/yr)

Biological Assessment

Special Status Species

Federally Listed Species

AA is known habitat for federally listed proposed threatened or endangered plant or animals or state listed species (Y/N)?

Habitat Use/Species Presence*	P/	/S	S/		S/S		I/D		I/S		None	
Rating	0.9	Н	0.8	М	0.7	М	0.5	L	0.3	L	0	L

AA Rating: 0 L

Other Special Status Species

Habitat Use/Species Presence*	P/	D D	P/	/S	S/		S/		I/.	D	I/	'S	No	ne
Rating	0.9	Н	0.8	Н	0.7	Μ	0.6	Μ	0.2	L	0.1	L	0	L

AA Rating: 0 L

*Habitat Use: P = Primary, S = Secondary, I = Incidental Species Presence: S = Suspected, D = Documented

Comments:

Level of Disturbance

	Predominant condition	ons found in EAA (600 feet fro	om perimeter of AA)
Conditions within AA	Land managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain roads or buildings.	Land not cultivated, but moderately grazed or hayed; or has been subject to minor clearing, fill placement or hydrological alteration; contains few roads, buildings, ditches or canals.	Land cultivated or heavily grazed or landscaped; subject to substantial fill placement, grading, clearing, or hydrological alteration; high road or building density, and or numerous ditches or canals.
AA occurs and is managed in predominantly natural state; is not grazed, hayed, landscaped, or otherwise converted; does not contain human induced trails.	L	L	М
AA not cultivated, but moderately grazed or hayed; or has been subject to relatively minor clearing or hydrological alteration; contains few human induced trails, ditches or canals.	М	М	Н
AA cultivated or heavily grazed or landscaped; subject to relatively substantial grading, clearing, or hydrological alteration; and numerous human induced trails, ditches or canals.	Н	н	Н

AA Rating: H

Plant Community Composition (visual estimate)

What is the percent ground cover (within the AA) dominated by native wetland vegetation?

Moderate 79-60%,

X Low < 60%

What is the percent of native wetland plants to non-native or non-wetland plants observed?

High <u>≥</u>80%,

Moderate 79-60%,

X Low < 60%

Cover			Н			М		L			
Native Wetland Species	H	ł	М	L	Н	М	L	Н	М	L	
Rating	11	H	.8H	.6M	.8H	.6M	.4M	.6M	.4M	.2L	
AA Rating:	0.2	L									

Comments:

General Wildlife Habitat

Wildlife Habitat Features

Disturbance Level		L			М			Н	
Plant Community	Н	М	L	Н	М	L	Н	М	L
Rating	Н	Н	М	Н	М	L	М	L	L
Wildlife habi	tat fea	tures ra	ating.	1H	.6M	.2L			
AA Rating:	0.2	L					•		

AA (from above)

н

L

Modified Wildlife Habitat Rating

The wildlife habitat features rating may be modified based on coordination with project wildlife analyst.

If the wildlife analyst determines that the level of use is:

 $\rm H-add$.2 to the wildlife habitat features AA rating

M – add .1 to the wildlife habitat features AA rating

L – do not modify the wildlife habitat features AA rating

AA rating	1H				.6M		.2L		
Modified									
Rating									
Value									
Range	1.2H	1.1H	1H	.8H	.7M	.6M	.4M	.3L	.2L

Modified AA Rating: 0.2	L
-------------------------	---

Comments:

General Amphibian Habitat

Presence of amphibians are documented in the AA or habitat and water quality characteristics are such that they would support amphibians (Y/N).

Ν

If the answer is Yes, add **.2**.

AA Rating:	0

Hydrological/Biophysical Assessment

Short and Long Term Surface Water Storage

This field assesses the potential of the AA to capture and hold surface water originating from inundation, precipitation, upland surface (sheet flow) or subsurface (groundwater flow).

Wetlands are inundated	\geq 5 out of 10 years		< 5 out of	f 10 years
Has the wetland's natural ability to store water been disturbed negatively?	Ν	Y	N	Y
Rating	1H	.8H	.6M	.4M
AA Rating:	0.8	Н		

Comments: Area is dammed downstream by highway embankment

Sediment/Nutrient/Toxicant Retention and Removal

This function applies to wetlands which could receive excess sediments, nutrients or toxicants through influx of surface or groundwater or direct input.

AA Rating:	0.9	Н						
Rating	1H	.9H	.8H	.7M	.6M	.5M	.4M	.3L
Has the wetland's natural ability to store water been disturbed negatively?	N	Y	N	Y	N	Y	N	Y
Within the AA, estimate % ground coverage with high to moderate surface roughness*	toxicants, or signs of eutrophication present.		nutrients, or compounds such that other functions are substantially impaired. Majo sedimentation, sources of nutrients or toxicar or signs of eutrophication present. $\geq 50\% \qquad <50\%$			ed. Major or toxicants, sent.		
Sediment, nutrient, and toxicant input levels within AA	AA receives or surrounding land use with potential to deliver low to moderate levels of sediments, nutrients, or compounds such that other functions are not substantially impaired. Minor sedimentation, sources of nutrients or			or AA receives or surrounding land use with potential to deliver high levels of sediments,				

*High Surface Roughness: 65% by aerial coverage of the AA contains surface roughness features. Surface roughness features include: emergent wetland, deep rooted woody and or herbaceous vegetation and for riverine and lacustrine wetlands may also include coarse woody debris, litter, boulders and micro-topography.

Moderate Surface Roughness: Between 35% and 65% by aerial coverage of the AA contains surface roughness features.

Comments:

Social Value Assessment

The following are not functions but values, which are important to society. Plus answers would suggest important societal assets, which should guide any future mitigation planning.

Visual Quality*

Refer to the glossary to distinguish between "wildland wetland" and "urban/exurban wetland" (see definitions below). If AA is considered "wildland wetland" answer the following three questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Has wetland experienced moderate to low level of disturbance?
 - iii. Is there an absence of human structures or other human induced disturbances?

If AA is considered to be an "urban/exurban wetland", answer the following six questions based on information gathered from suggested sources. Each 'yes' answer receives a plus (+) rating in the space provided.

- i. Is the wetland in public ownership (city, county, state or federal)?
- ii. Is there potentially a large number of viewers?
- iii. Is the viewing distance in the fore or middle grounds for most viewers?
- iv. Has the wetland experienced a moderate to low level of disturbance?
- v. Is there an absence of human structures or other human induced disturbances?
- vi. Is the wetland a part of a larger open space, green space, park, buffer or corridor?

Recreational/Educational Quality*

Answer the following seven questions for both "wildland wetlands" and "urban/exurban wetlands". Each 'yes' answer receives a plus (+) rating in the space provided.

- + i. Is the wetland in public ownership (city, county, state or federal)?
 - ii. Is the wetland presently used for recreation/education?
 - iii. Is the wetland 1/4 mile or less from and elementary school?
 - iv. Is the wetland five miles or less from a high school?
- + v. Is there vehicular, trail, boat or canoe access to the site?
 - vi. Has the wetland experienced a moderate to low level of disturbance?
- + vii. Is the wetland visible from a county, state or federal highway, heavily used recreation trail, residential development or other situations where large numbers of people would have visual access to the wetland?

*Note: In some cases wetlands many contain plant or wildlife species or perform functions that would be diminished by human activity. In these cases recreational and educational activities would be prohibited.

Urban/Exurban Wetland: A wetland that exists within an urban or exurban context; hydrology is often altered by roads, buildings, parking, and other impervious surfaces; architectural elements are a predominant aspect of the visible landscape.

Wildland Wetland: A wetland that exists within a rural or wildland context; natural hydrological processes persist, rural or natural elements are a predominant aspect of the visible landscape

Functional Assessment Rating

Function Variables	Actual Functional Points/Rating	Possible Functional Points	Functional Units (Actual Points x Estimated AA Acreage):
Plant Community Composition	0.2	1	0.208
Listed/Proposed T&E Species Habitat	0	0.9	0
Other Special Status Species Habitat	0	0.9	0
General Wildlife Habitat	0.2	1	0.208
General Amphibian Habitat	0	0	0
Short and Long Term Surface Water Storage	0.8	1	0.832
Sediment/Nutrient/Toxicant Removal	0.9	1	0.936
Totals:	2.1	5.8	2.184

% total functional points:	36%

Overall Assessment Area Category

Red Flag Category

X

Documented habitat for a federally listed or proposed threatened or endangered plant or animal species.	N
Category I Wetland	
(Must satisfy one of the following criteria; if it does not meet criteria, go to Category II)	
Score of \geq .8 for Other Special Status Species and level of disturbance is rated low; or	N
Score of 1 functional point for Plant Community Composition; or	N
Total actual functional points > 80% (round to nearest whole #) of total possible functional	
points.	Ν
Category II Wetland	
(Criteria for Category I not satisfied and meets any one of the following criteria; if not satisfied, go	
to Category IV)	
Score of \geq .9 functional point for General Wildlife Habitat; or	N
Score of \geq .9 functional point for General Fish/Aquatic Habitat; or	
Score of $>.7 \le .8$ functional point for Plant Community Composition	N
Total actual functional points $> 65\%$ of total possible functional points.	N
Category III Wetland	
(Criteria for Categories I, II or IV not satisfied)	
Category IV Wetland	
(Criteria for Categories I on II and not active and all of the following emitaries are most if it does	

(Criteria for Categories I or II are not satisfied and all of the following criteria are met; if it does not satisfy criteria, place wetland in Category III)

Total actual functional points < 30% of total possible functional points

Appendix D Lake Powell Pipeline Draft 404(b)(1) Analysis

Appendix D

Lake Power Pipeline Draft 404(b)(1) Analysis

March 2011

Page

Chapter D.1 – Introduction

D.1.1 Purpose of the 404 (b)(1) Analysis	D-1
D.1.2 404(b)(1) Guidelines	
D.1.3 Procedures Followed in the Evaluation (Based on 40 CFR 230.5)	
D.1.3.1 Identification of Waters of the U.S. Including All Wetlands and	
Riparian Areas (Jurisdictional and Non-jurisdictional)	D-2
D.1.4 Items from 40 CFR 230 Not Included in this Evaluation Because	
They Are Not Applicable	D-3

Chapter D.2 – Alternatives Analysis

D.2.1 Project	ct Purpose and Need	D-4
	ription of Practicable Alternatives	
D.2.2		
D.2.2	2.2 Existing Highway Alternative	D-10
D.2.2		
D.2.2	2.4 Transmission Line Alternatives	D-12
D.2.3 Summ	nary Description of No Lake Powell Water Alternative	D-19
D.2.3	3.1 WCWCD No Lake Powell Water Alternative	D-19
D.2	3.2 CICWCD No Lake Powell Water Alternative	D-21
D.2	3.3 KCWCD No Lake Powell Water Alternative	D-21
D.2.4 Summ	nary Description of the No Action alternative	D-22
D.2.4	4.1 WCWCD No Lake Powell Water Alternative	D-22
D.2.4	4.2 CICWCD No Lake Powell Water Alternative	D-22
D.2.4	4.3 KCWCD No Lake Powell Water Alternative	D-22
D.2.5 Altern	natives Considered and Determined to be Impracticable	
D.2.:	5.1 Lone Rock Intake Pump Station Alternatives	D-23
D.2.:	5.2 All Utah Alignment Alternatives	D-23
D.2.:	1 0	D-24
D.2.:	5.3 Honeymoon Trail and South little Creek Mountain	
	Alignment Alternative	D-24
D.2.:	0	
D.2.:	5.5 South Powerline Alignment Alternative	D-24
D.2.:	5.6 Cockscomb Tunnel Alignments	D-25
D.2.:	5.7 Hurricane Cliffs Alignments	D-25
D.2.5	<i>,</i>	
D.2.6 Aquat	tic Ecosystems That Could be Adversely Impacted	D-25
D.2.0	6.1 Reservoirs	D-25
D.2.0	6.2 Streams and Rivers	D-26
D.2.0	6.3 Wetlands and Riparian Areas	D-26
Chapter D.3 – Alter	rnative Evaluation for Discharge of Dredged or Fill Material (4	0 CFR 230.10(a))

D.3.1 Comparison of Potential Adverse Impact son Aquatic Ecosystem	D-27
D.3.2 Practicable Alternatives to Discharge of Dredged or Fill Material in	
Special Aquatic Sites (40CFR230.10(a)(3))	D-27
D.3.3 Practicable Alternatives That Would Have less Adverse Impact on	
Aquatic Ecosystems (40CFR230.10(a)(2))	D-27

Table of Contents (continued)

Chapter D.4 – Alternative Evaluation for Violations Caused by Discharge of Dredged or Fill Material (40 CFR 230.10(b))

Chapter D.5 – Potential Impacts on Physical and Chemical Components of the Aquatic Ecosystem (40 CFR 230.10(c) Subpart C)

Chapter D.6 – Potential Impacts on Biological Characteristics of the Aquatic Ecosystem (40 CFR 230.10(c) Subpart D)

Chapter D.7 – Potential Impacts on Special Aquatic Sites (40 CFR 230.10(c) Subpart E)

Chapter D.8 – Potential Effects on Human Use Characteristics (40 CFR 230.10(c) Subpart F)

Chapter D.9 – General Evaluation of Dredged or Fill Materials (40 CFR 230.10(c) Subpart G)

D.9.1	Description of Dredged or Fill Materials	D-33
D.9.2	Potential for Contamination of Dredge or Fill Materials	D-33

Chapter D.10 – Actions to Minimize Adverse Effects (40 CFR 230.10(c) Subpart H)

Chapter D.11 – Factual Determinations of Impacts (Short-Term and Long-Term) (40 CFR 230.11)

Chapter D.12 – Alternative with Least Adverse Impact on Aquatic Ecosystems and Wetlands

D.12.1	South Alternative	D-36
D.12.2	Existing Highway Alternative	D-37
	Southeast Corner Alternative	
D.12.4	No Lake Powell Water Alternative	D-38
D.12.5	No Action Alternative	D-38
D.12.6	Conclusion	D-38

Chapter D.13 – Findings of Compliance – Comparision of D.12 to D.3. through D.10 (40 CFR 230.12)

D.13.1 Discharge Sites Complying with Requirements of 404(b)(1) GuidelinesD-41	
D.13.2 Discharge Sites Complying with Requirements of 404(b)(1) Guidelines with	
Inclusion of Actions to Minimize Adverse EffectsD-41	
D.13.3 Discharge Sites Not Complying with Requirements of 404(b)(1) GuidelinesD-41	
D.13.3.1 Practicable Alternatives with Less Adverse Impact on the	
Aquatic EcosystemD-14	Ļ
D.13.3.2 Significant Degradation of Aquatic EcosystemD-41	
D.13.3.3 Appropriate and Practicable Measures to Minimize Harm on the	
Aquatic Ecosystem Not IncludedD-41	

Page

Table of Contents (continued)

Tables

Table Num	ber Table Title	Page
Table D-1	Construction Features of Lake Powell Pipeline Alternatives	D-40
	(D.3.1) Comparison of Potential Impacts on Aquatic Ecosystems	
Table D-3	(D.3.2) Practicable Alternatives to Discharges of Dredged or Fill Material in	
	Special Aquatic Sites	D-49
Table D-4	(D.3.3) Practicable Alternatives That Would Have less Adverse Impact on	
	Aquatic Ecosystems	D-50
Table D-5	(D.4) Alternative Evaluation for Violations Caused By Discharge of Dredged or	
	Fill Material	D-51
Table D-6	(D.5) Potential Impacts on Physical and Chemical Components of the Aquatic Ecosyst	em D-52
Table D-7	(D.6) Potential Impacts on Biological Characteristics of the Aquatic Ecosystem	D-56
Table D-8	(D.7) Potential Impacts on Special Aquatic Sites	D-58
Table D-9	(D.8) Potential Impacts on Human Use Characteristics	D-59
Table D-10	(D.9.1) Description of Dredged or Fill Materials	D-60
Table D-11	(D.9.2) Potential for Contamination of Dredged or Fill Materials	D-62
Table D-12	(D.10) Actions to Minimize Adverse Effects	D-63
Table D-13	(D.11) Factual Determinations of Impacts (Short-Term and Long-Term)	D-66

Figures

Figure Number	Figure Title	Page
Figure D.2-1	Lake Powell Pipeline Proposed Project and Alternative Features	D-6
Figure D.2-2	Lake Powell Pipeline Intake and Water Conveyance Systems	D-7
Figure D.2-3	Lake Powell Pipeline Hydro System South Alternative	D-9
Figure D.2-4	Cedar Valley Pipeline System	D-11
Figure D.2-5	Lake Powell Pipeline Hydro System Existing Highway Alternative	D-13
Figure D.2-6	Lake Powell Pipeline Hydro System Southeast Corner Alternative	D-14
Figure D.2-7	Lake Powell Pipeline Transmission Line Alternatives East	D-15
Figure D.2-8	Lake Powell Pipeline Transmission Line Alternatives West	D-18
Figure D.2-9	Cedar Valley Transmission Line Alternatives	D-20

Chapter D.1 Introduction

This appendix presents the 404(b)(1) Evaluation prepared for the Lake Powell Pipeline Project. This evaluation was performed by the Utah Division of Water Resources in compliance with Title 40 Code of Federal Regulations 40 (CFR) 230 – Section 404(b)(1) Guidelines for Specification of Disposal Sites for Dredged or Fill Material.

Waters of the U.S. are protected by the federal government through Section 404 of the Clean Water Act (CWA) (sections a and e) which is administered by the U.S. Army Corps of Engineers (USACE) with oversight by the U.S. Environmental Protection Agency (EPA). The CWA applies to dredged or fill material placed in waters of the United States, which Title 40 CFR 230.3 defines as all waters which are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide, all interstate waters including interstate wetlands and all other waters such as interstate lakes, rivers, streams (including intermittent streams), mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes or natural ponds.

D.1.1 Purpose of the 404(b)(1) Analysis

This evaluation under Section 404(b)(1) of the Clean Water Act has been prepared to analyze and describe the potential impacts from proposed discharges of fill material into waters of the United States as a result of the construction and operation of the proposed Lake Powell Pipeline project in Utah and Arizona. This 404(b)(1) Evaluation is prepared in support of the requirements of Section 404 of the CWA (PL 92-500, as amended), and the Environmental Protection Agency Guidelines (40 CFR Part 230 *et seq*). Specifically, the 404(b)(1) Evaluation is prepared to support Wetland and Riparian Resources Draft Study Report.

D.1.2 404(b)(1) Guidelines

The 404(b)(1) Guidelines, contained in Title 40 CFR Part 230 et seq., are the criteria used in evaluating discharges of fill (or discharges of dredged materials) in waters of the United States under Section 404 of the CWA Act.

The Guidelines were developed by the EPA in conjunction with the Secretary of the Army acting through the Chief of Engineers and have the full force and effect of law. The Guidelines are consistent with policies expressed in the CWA and are intended to implement those policies. The Guidelines are weighted toward restoring and maintaining the chemical, physical, and biological integrity of waters of the United States by controlling discharges. Basic to the Guidelines is an understanding that fill (or dredged) material should not be discharged into such waters unless it is demonstrated that such discharges would not have unacceptable adverse impacts either individually or in combination with existing and/or probable impacts of other activities affecting the environment. A Section 404(b)(1) Evaluation is intended to provide demonstration of the compliance, or the lack thereof, with the Guidelines.

The Guidelines state that there must be no other practicable alternative which is less damaging to the aquatic environment, unless the least damaging alternative would have other significant adverse environmental consequences. This is a technical analysis based on many factors that are evaluated in light of the basic purpose for the project under review.

A number of critical items must be evaluated for each project. These include the project basic purpose, practicable alternatives, cumulative effects, and impact mitigation, as well as the factual determinations. Key issues must be

decided in arriving at a determination of compliance or non-compliance. The project must not cause or contribute to significant degradation of waters of the United States, and all appropriate and practicable measures for avoiding or minimizing potential adverse impacts of the discharge on the aquatic ecosystem must be taken.

Section 230.10(b) requires that the project comply with State water quality standards, the federal Endangered Species Act (ESA), and other pertinent statutory provisions. Section 230.11 of the Guidelines sets forth the factual determinations used in deciding compliance. These determinations are:

- Physical substrate
- Water circulation, fluctuation, and salinity
- Suspended particulate/turbidity
- Contaminant
- Aquatic ecosystem and organism
- Proposed disposal site
- Cumulative effects on the aquatic ecosystem
- Secondary effects on the aquatic ecosystem

Section 230.12 requires a finding of compliance or non-compliance with the restrictions on discharge.

Subparts C through F of the Guidelines evaluate the potential impacts of the fill activity on physical and chemical characteristics of the aquatic ecosystem, special aquatic sites, and human use characteristics respectively. Subpart G of the Guidelines set forth evaluation and testing procedures to provide information necessary to reach the determinations in Subpart B. Subpart H of the Guidelines lists actions to minimize adverse effects of the discharge.

D.1.3 Procedures Followed In the Evaluation (Based On 40 CFR 230.5)

D.1.3.1 Identification of Waters of the U.S. Including All Wetlands and Riparian Areas (Jurisdictional and Non-jurisdictional)

The analysis of impacts on aquatic resources involved identifying, defining and documenting existing waters and wetlands by plant community type, extent, and function, then determining the impact of the alternatives on each aquatic type, extent and function. All wetlands and riparian areas were addressed regardless if they were jurisdictional or non-jurisdictional. Direct and indirect impacts were evaluated, quantified to the extent possible and visually presented on maps. The analysis of impacts considered the standard operating procedures and project design features that the Utah Division of Water Resources (UDWR) would carry out or implement as part of the project.

Data collected during initial data review included wetland mapping (i.e. National Wetland Inventory [NWI] maps), soils mapping, U.S. Geological Survey (USGS) topographic maps, aerial photography (2007 one-meter National Agricultural Imagery Program [NAIP] imagery in Arizona and 2009 one-meter NAIP imagery in Utah) and video. Field surveys were performed in July 2009, with follow-up field work in October 2009, April 2010, and December 2010. The description of baseline condition was determined from an evaluation of existing mapped data and the results of field surveys to identify and delineate existing wetlands, riparian areas and other jurisdictional waters, characterize wetland hydrology and hydrogeological settings, and determine wetland and riparian area functions within the impact area. The baseline wetland functions and values assessment information

was used to characterize the existing wetland resources in the impact area of influence and to assess the effects and significance of potential changes from project-related activities. The functional assessment also was used to evaluate potential mitigation opportunities, including wetland enhancement and restoration. Criteria in the 2007 Guidance on the Rapanos Decision (USEPA and USACE 2007) and consultation with the USACE and USEPA were evaluated to determine which waters and waterways may be jurisdictional and those that are likely to not meet criteria for jurisdictional waters. Impacts on wetland, riparian areas, and jurisdictional waters were analyzed for each of the alternative alignments. These impacts were measured by calculating the area within the study area and estimating potential changes in wetland function or value.

D.1.4 Items from 40 CFR 230 Not Included in this Evaluation Because They Are Not Applicable

With regard to the Lake Powell Pipeline project, impacts from placement of dredged or fill material do not apply to tidal-affected waters, sandflats, prairie potholes, or playa lakes. In addition, for the following tables, specific topics were not found to be applicable to the project:

- Table 3 Section D.3.2.2 and D.3.2.3 under Special Aquatic Sites. Discussion of mudflats and vegetative shallows is not applicable for any alternative.
- Table 11 Section D.9.2 Gravel, sand, other naturally occurring inert materials, rock riprap, excavated earth used for trench backfill, and concrete are not applicable for any of the alternatives because contact with any contaminated material is not anticipated.

Chapter D.2 Alternatives Analysis

D.2.1 Project Purpose and Need

The determination of the basic project needs and attendant purposes is required to conduct an adequate 404(b)(1) evaluation of the least damaging practical alternative. The project need and purpose drives the definition and evaluation of practicable alternatives.

The LPP project needs and purposes are:

Needs

To develop water resources to meet the demands for projected population beyond the present water resources supplying Kane, Washington and central Iron counties.

To maximize use of current municipal and industrial (M&I) water supplies in Kane, Washington and central Iron counties to meet current and future population demands.

To implement water conservation, reuse, and recycling measures to meet or exceed the State of Utah's goal of 25 percent reduction in per capita water use by 2050.

To develop clean, renewable energy sources wherever possible.

Purposes

To deliver 86,249 acre-feet of the State of Utah's Upper Colorado River Basin water on an annual basis from Lake Powell to Washington County (69,000 acre-feet), Kane County (10,000 acre-feet) and central Iron County (up to 13,249 acre-feet) to meet future M&I water demands in southwest Utah.

To implement the Lake Powell Pipeline Development Act authorized by the Utah State Legislature in 2006.

To protect water quality of surface and underground water resources that may be affected by Lake Powell Pipeline project.

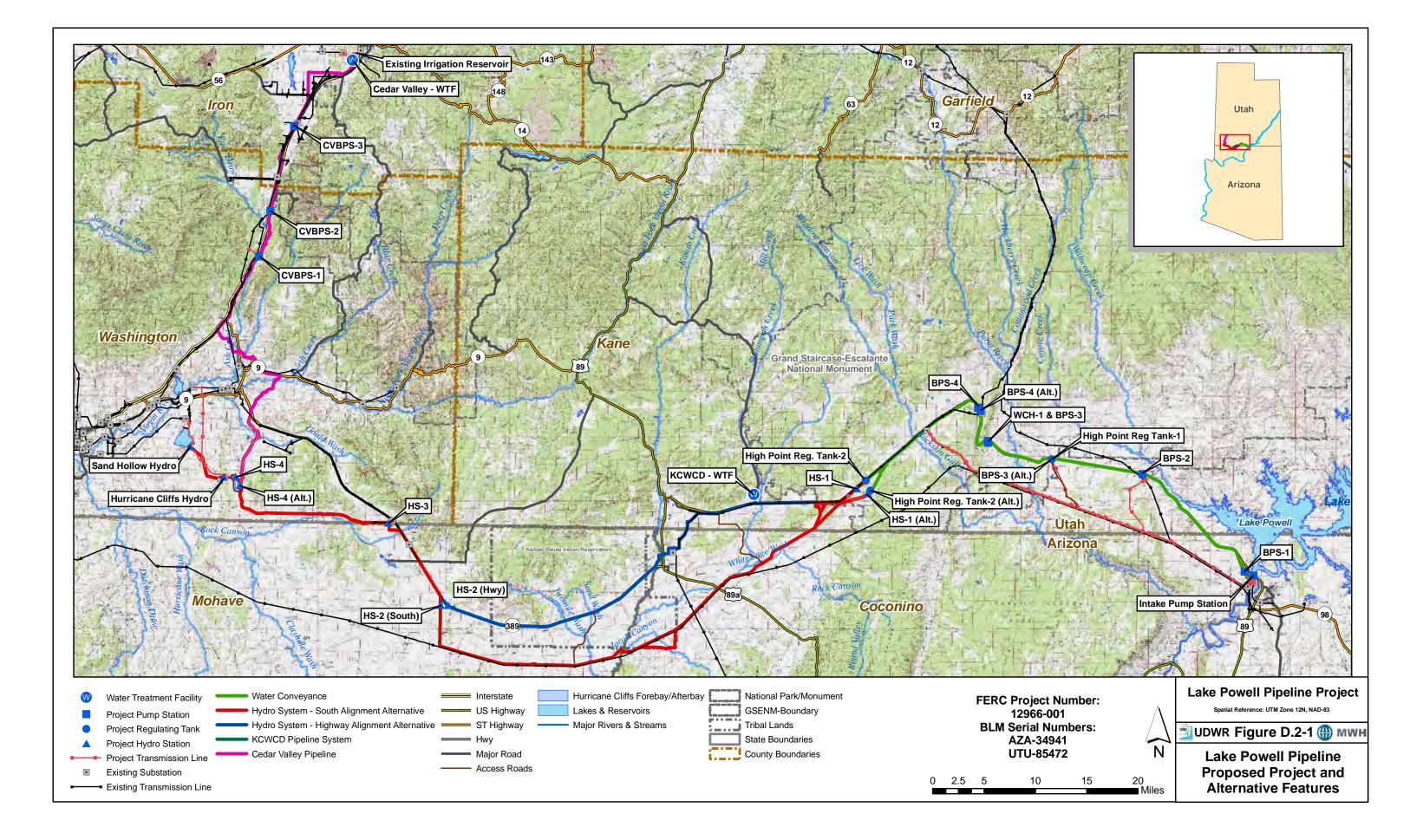
To provide creative methods, facilities and incentives to implement water conservation measures, reuse, recycling and conjunctive use of water resources.

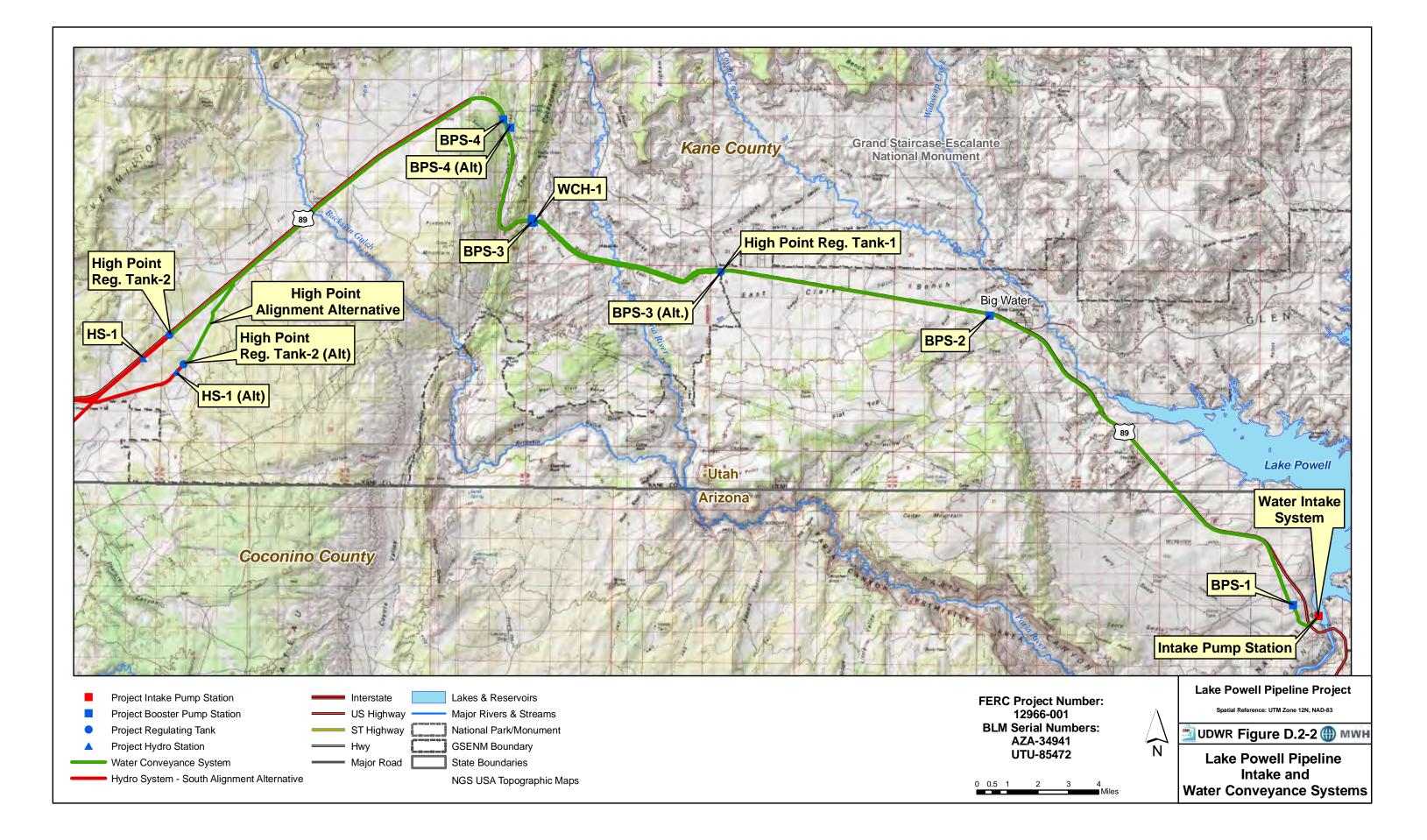
To support the implementation of Recovery Plans and/or Habitat Conservation Plans for threatened and endangered species that may be affected by the construction or operation of the Lake Powell Pipeline project.

To develop hydropower generating works and incidental electrical facilities along the Lake Powell Pipeline to sell the electric energy not needed for project operation to public utilities.

D.2.2 Description of Practicable Alternatives

Three primary pipeline and penstock alignment alternatives are described in this section along with the electrical power transmission line alternatives. The pipeline and penstock alignment alternatives share common segments between the intake at Lake Powell and delivery at Sand Hollow Reservoir, and they are spatially different in the area through and around the Kaibab Indian Reservation. The South Alternative extends south around the Kaibab-Paiute Indian Reservation. The Existing Highway Alternative follows an Arizona state highway through the Kaibab-Paiute Indian Reservation. The Southeast Corner Alternative follows the Navajo-McCullough Transmission Line corridor through the southeast corner of the Kaibab-Paiute Indian Reservation. The transmission line alignment alternatives are common to all the pipeline and penstock alignment alternatives. Figure D.2-1 shows the overall proposed project and alternative features from Lake Powell near Page, Arizona to Sand Hollow and Cedar Valley, Utah. Table D-1 summarizes the construction features of the alternatives.


D.2.2.1 South Alternative


The South Alternative consists of five systems: Intake, Water Conveyance, Hydro, Kane County Pipeline, and Cedar Valley Pipeline.

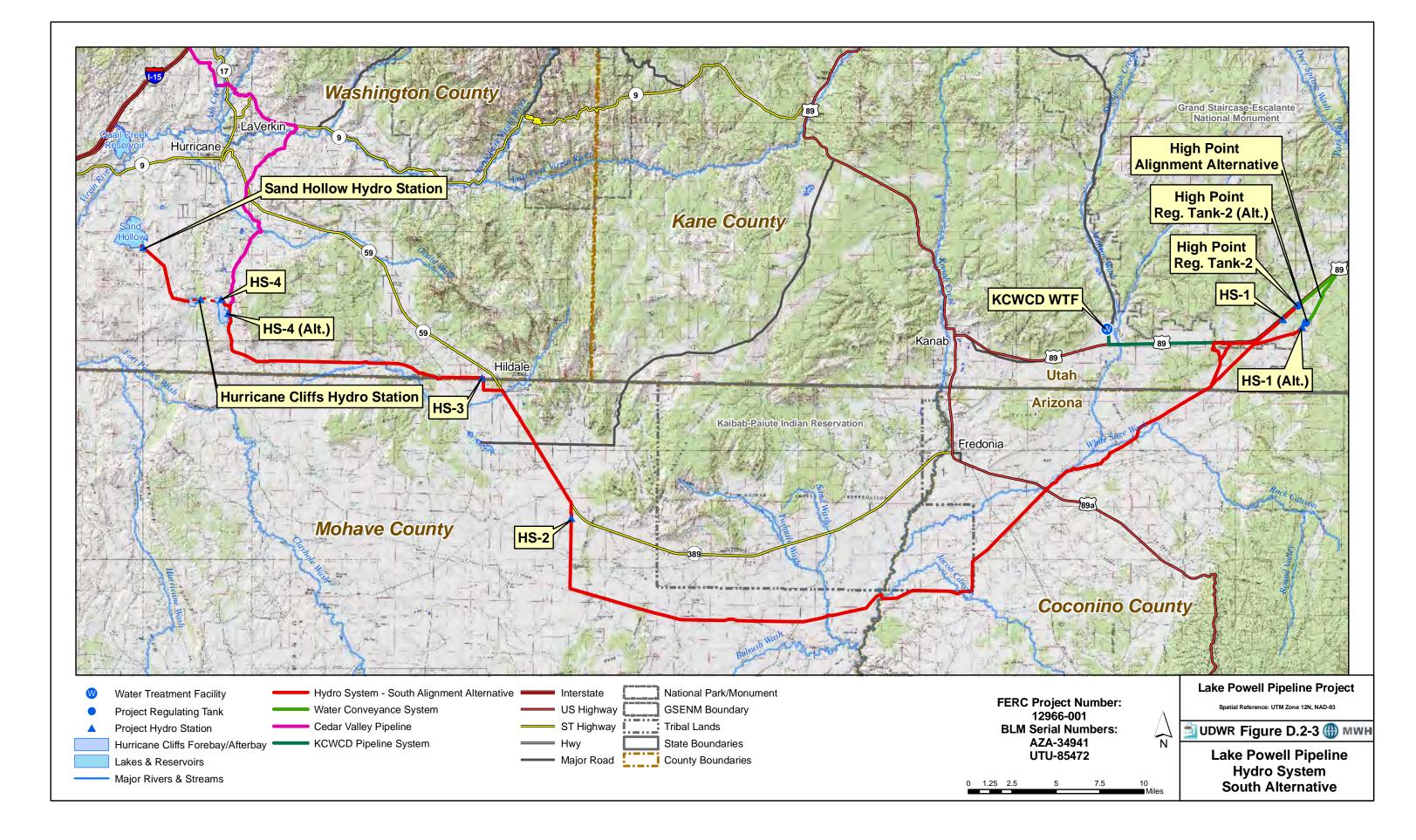
The **Intake System** would pump Lake Powell water via submerged horizontal tunnels and vertical shafts into the LPP. The intake pump station would be constructed and operated adjacent to the west side of Lake Powell approximately 2,000 feet northwest of Glen Canyon Dam in Coconino County, Arizona (Figure D.2-2). The pump station enclosure would house vertical turbine pumps with electric motors, electrical controls, and other equipment at a ground level elevation of 3,745 feet mean sea level (MSL).

The Water Conveyance System would convey the Lake Powell water from the Intake System for about 51 miles through a buried 69-inch diameter pipeline parallel with U.S. 89 in Coconino County, Arizona and Kane County, Utah to a buried regulating tank (High Point Regulating Tank-2) on the south side of U.S. 89 at ground level elevation 5,695 feet MSL, which is the LPP project topographic high point (Figure D.2-2). The pipeline would be sited within a utility corridor established by Congress in 1998 which extends 500 feet south and 240 feet north of the U.S. 89 centerline on public land administered by the Bureau of Land Management (BLM) (U.S. Congress 1998). Four booster pump stations (BPS) located along the pipeline would pump the water under pressure to the high point regulating tank. Each BPS would house vertical turbine pumps with electric motors, electrical controls, and other equipment. Additionally, each BPS site would have a substation, buried forebay tank and a surface emergency overflow detention basin. BPS-1 would be sited within the Glen Canyon National Recreation Area adjacent to an existing Arizona Department of Transportation maintenance facility located west of U.S. 89. BPS-2 would be sited on land administered by the Utah School and Institutional Trust Lands Administration (SITLA) near the town of Big Water, Utah on the south side of U.S. 89. BPS-3 and an in-line hydro station (WCH-1) would be sited at the east side of the Cockscomb geologic feature in the Grand Staircase-Escalante National Monument (GSENM) within the Congressionally-designated utility corridor. BPS-3 (Alt) is an alternative location for BPS-3 on land administered by the BLM Kanab Field Office near the east boundary of the GSENM on the south side of U.S. 89 within the Congressionally-designated utility corridor. Incorporation of BPS-3 (Alt.) into the LPP project would replace BPS-3 and WCH-1 at the east side of the Cockscomb geologic feature. BPS-4 would be sited on the west side of U.S. 89 and within the Congressionally-designated utility corridor in the GSENM on the west side of the Cockscomb geologic feature.

The High Point Alignment Alternative would diverge south from U.S. 89 parallel to the K4020 road and continue outside of the Congressionally-designated utility corridor to a buried regulating tank (High Point Regulating Tank-2 (Alt.) at ground level elevation 5,630 feet MSL, which would be the topographic high point of the LPP project along this alignment alternative (Figure D.2-2). The High Point Alignment Alternative would include

BPS-4 (Alt.) on private land east of U.S. 89 and west of the Cockscomb geologic feature (Figure D.2-2). Incorporation of the High Point Alignment Alternative and BPS-4 (Alt.) into the LPP project would replace the High Point Regulation Tank-2 along U.S. 89, the associated buried pipeline and BPS-4 west of U.S. 89.

A rock formation avoidance alignment option would be included immediately north of Blue Pool Wash along U.S. 89 in Utah. Under this alignment option, the pipeline would cross to the north side of U.S. 89 for about 400 feet and then return to the south side of U.S. 89. This alignment option would avoid tunneling under the rock formation on the south side of U.S. 89 near Blue Pool Wash.


A North Pipeline Alignment option is located parallel to the north side of U.S. 89 for about 6 miles from the east boundary of the GSENM to the east side of the Cockscomb geological feature.

The **Hydro System** would convey the Lake Powell water from High Point Regulating Tank-2 at the high point at ground level elevation 5,695 feet MSL for about 87 miles through a buried 69-inch diameter penstock in Kane and Washington counties, Utah and Coconino and Mohave counties, Arizona to Sand Hollow Reservoir near St. George, Utah (Figure D.2-3). The High Point Alignment Alternative would convey the Lake Powell water from High Point Regulating Tank-2 (Alt.) at the high point at ground level elevation 5,630 feet MSL for about 87.5 miles through a buried 69-inch diameter penstock in Kane and Washington counties, Utah and Coconino and Mohave counties, Utah and Coconino and Mohave counties, Arizona to Sand Hollow Reservoir near St. George, Utah (Figure D.2-3). Four in-line hydro generating stations (HS-1, HS-2 HS-3 and HS-4) with substations located along the penstock would generate electricity and help control water pressure in the penstock. HS-1 would be sited on the south side of U.S. 89 within the Congressionally-designated utility corridor through the GSENM and continue along a portion of the K3290 road.

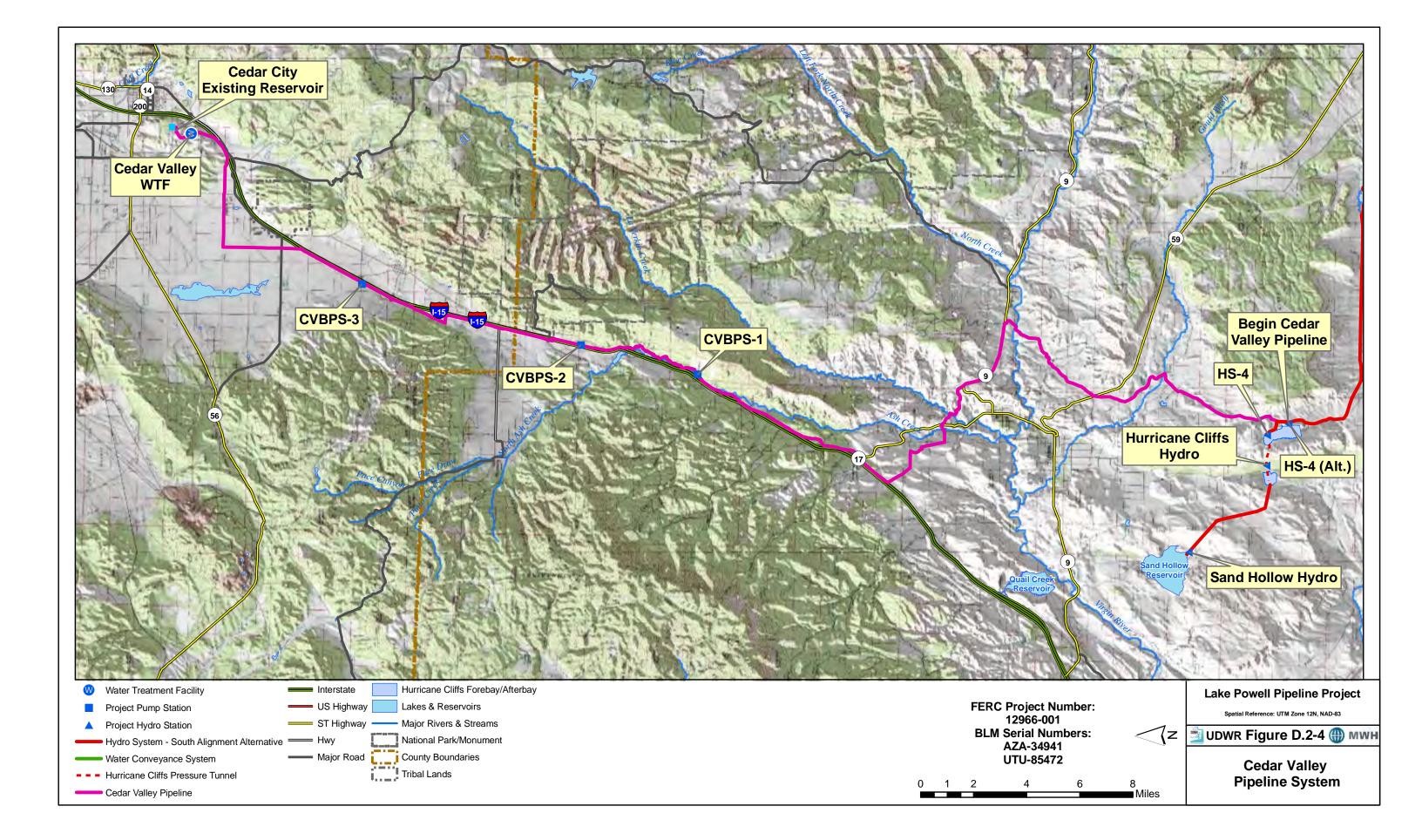
The proposed penstock alignment and two penstock alignment options are being considered to convey the water from the west GSENM boundary south through White Sage Wash. The proposed penstock alignment would parallel the K3250 road south from U.S. 89 and follow the Pioneer Gap Road alignment around the Shinarump Cliffs. One penstock alignment option would parallel the K3285 road southwest from U.S. 89 and continue to join the Pioneer Gap Road around the Shinarump Cliffs. The other penstock alignment option would extend southwest through currently undeveloped BLM land from the K3290 road into White Sage Wash.

The penstock alignment would continue through White Sage Wash and then parallel to the Navajo-McCullough Transmission Line, crossing U.S. 89 Alt. and Forest Highway 22 toward the southeast corner of the Kaibab-Paiute Indian Reservation. The penstock alignment would run parallel to and south of the south boundary of the Kaibab-Paiute Indian Reservation, crossing Kanab Creek and Bitter Seeps Wash, across Moonshine Ridge and Cedar Ridge, and north along Yellowstone Road to Arizona State Route 389 west of the Kaibab-Paiute Indian Reservation. HS-2 would be sited west of the Kaibab-Paiute Indian Reservation. The penstock alignment would continue northwest along the south side of Arizona State Route 389 past Colorado City to Hildale City, Utah and HS-3.

The penstock alignment would follow Uzona Road west through Canaan Gap and south of Little Creek Mountain and turn north to HS-4 (Alt.) above the proposed Hurricane Cliffs forebay reservoir. The forebay reservoir would be contained in a valley between a south dam and a north dam and maintain active storage of 11,255 acre-feet of water. A low pressure tunnel would convey the water to a high pressure vertical shaft in the bedrock forming the Hurricane Cliffs, connected to a high pressure tunnel near the bottom of the Hurricane Cliffs. The high pressure tunnel would connect to a penstock conveying the water to a pumped storage hydro generating station. The pumped storage hydro generating station would connect to a 4,000 acre-foot afterbay reservoir contained by a single dam in the valley below the Hurricane Cliffs. A low pressure tunnel would convey the water northwest to a

penstock continuing on to the Sand Hollow Hydro Station. The water would discharge into the existing Sand Hollow Reservoir.

The peaking hydro generating station option would involve the 11,255 acre-foot forebay reservoir with HS-4 discharging into the forebay reservoir, with the peaking hydro generating station discharging to the 4,000 acre-foot afterbay reservoir. A low pressure tunnel would convey the water to a high pressure vertical shaft in the bedrock forming the Hurricane Cliffs, connected to a high pressure tunnel near the bottom of the Hurricane Cliffs. The high pressure tunnel would conveying the water to a peaking hydro generating station, which would discharge into the 4,000 acre-foot afterbay reservoir. The afterbay reservoir would connect to a low pressure tunnel and penstock running northwest to the Sand Hollow Hydro Station. LPP water flowing through the Sand Hollow Hydro Station would discharge into Sand Hollow reservoir.


The **Kane County Pipeline System** would convey the Lake Powell water from the Lake Powell Pipeline at the west GSENM boundary for about 8 miles through a buried 24-inch diameter pipe in Kane County, Utah to a conventional water treatment facility located near the mouth of Johnson Canyon. The pipeline would parallel the south side of U.S. 89 across Johnson Wash and then run north to the new water treatment facility site (Figure D.2-3).

The **Cedar Valley Pipeline System** would convey the Lake Powell water from the Lake Powell Pipeline just upstream of HS-4 or HS-4 (Alt.) for about 58 miles through a buried 36-inch diameter pipeline in Washington and Iron counties, Utah to a conventional water treatment facility in Cedar City, Utah (Figure D.2-4). Three booster pump stations (CBPS) located along the pipeline would pump the water under pressure to the new water treatment facility. The pipeline would follow an existing BLM road north from HS-4, cross Utah State Route 59 and continue north to Utah State Route 9, with an aerial crossing of the Virgin River at the Sheep Bridge. The pipeline would run west along the north side of Utah State Route 9 and parallel an existing pipeline through the Hurricane Cliffs at Nephi's Twist. The pipeline would continue across La Verkin Creek, cross Utah State Route 17, and make an aerial crossing of Ash Creek. The pipeline would continue northwest to the Interstate 15 corridor and then northeast parallel to the east side of Interstate 15 highway right-of-way. CBPS-1 would be sited adjacent to an existing gravel pit east of Interstate 15. CBPS-2 would be sited on private property on the east side of Interstate 15 and south of the Kolob entrance to Zion National Park. CBPS-3 would be sited on the west side of Interstate 15 in Iron County. The new water treatment facility would be sited near existing water reservoirs on a hill above Cedar City west of Interstate 15.

D.2.2.2 Existing Highway Alternative

The Existing Highway Alternative consists of five systems: Intake, Water Conveyance, Hydro, Kane County Pipeline, and Cedar Valley Pipeline. The Intake, Water Conveyance and Cedar Valley Pipeline systems would be the same as described for the South Alternative.

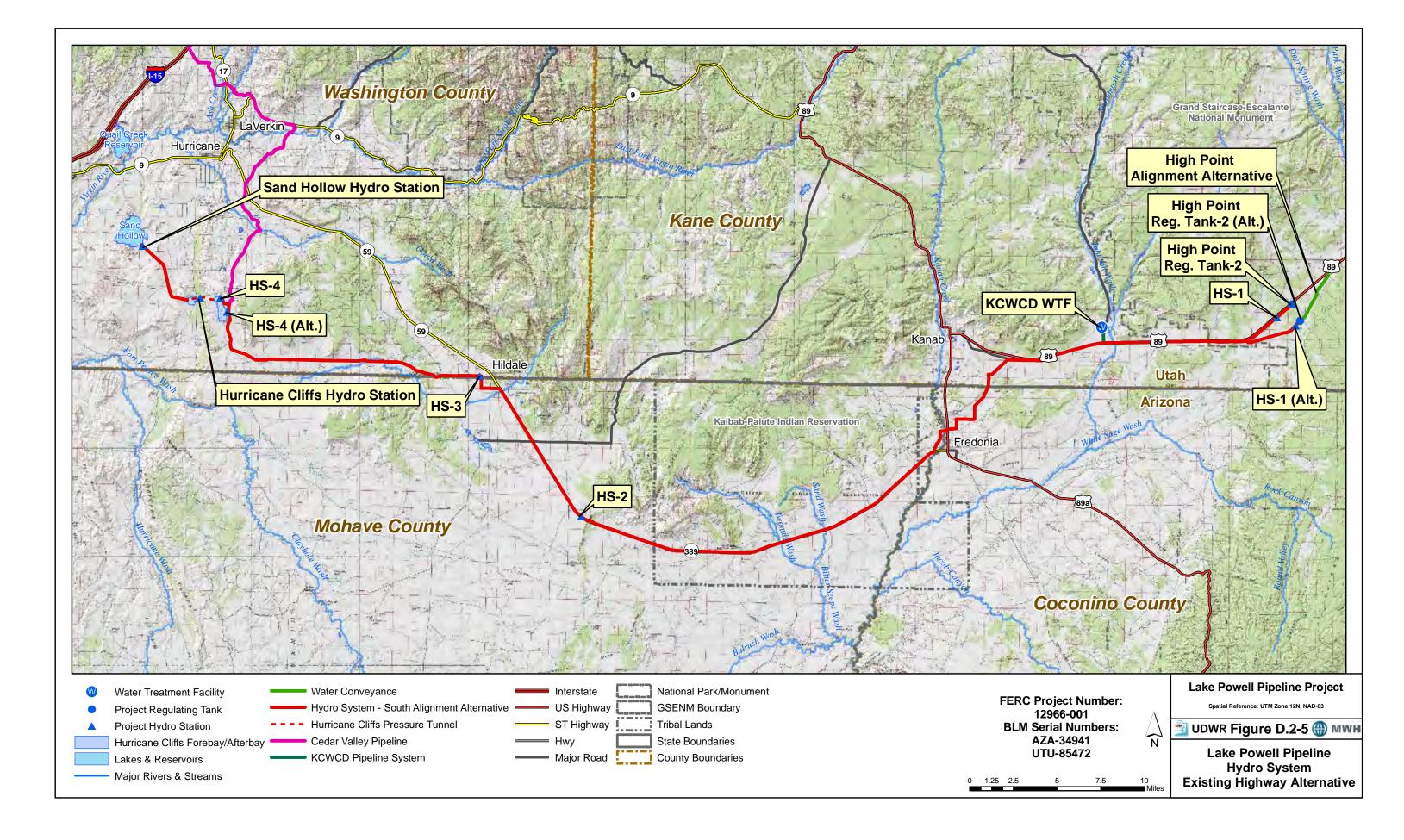
The **Hydro System** would convey the Lake Powell water from the regulating tank at the high point at ground elevation 5,695 feet MSL for about 80 miles through a buried 69-inch diameter penstock in Kane and Washington counties, Utah and Coconino and Mohave counties, Arizona to Sand Hollow Reservoir near St. George, Utah (Figure D.2-5). The High Point Alignment Alternative would convey the Lake Powell water from High Point Regulating Tank-2 (Alt.) at the high point at ground level elevation 5,630 feet MSL for about 80.5 miles through a buried 69-inch diameter penstock in Kane and Washington counties, Utah and Coconino and Mohave counties, Arizona to Sand Hollow Reservoir near St. George, Utah (Figure D.2-3). The High Point Alignment Alternative would rejoin U.S. 89 about 2.5 miles east of the west boundary of the GSENM. Four in-line hydro generating stations (HS-1, HS-2 HS-3 and HS-4) located along the penstock would generate electricity and help control water pressure in the penstock. HS-1 would be sited on the south side of U.S. 89 within the Congressionally-designated utility corridor through the GSENM. The High Point Alignment Alternative would include HS-1 (Alt.)

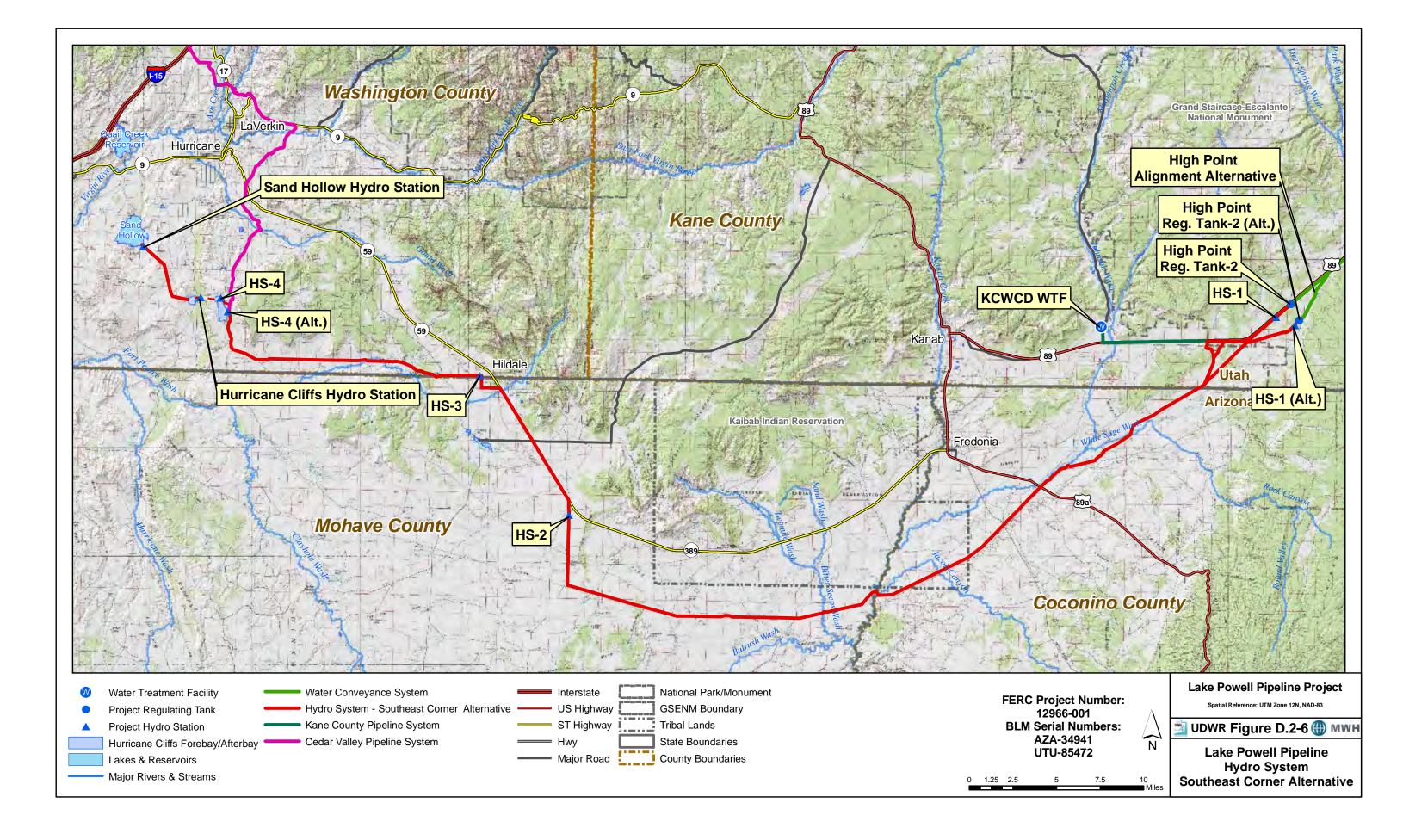
along the K4020 road within the GSENM and continue along a portion of the K3290 road to its junction with the pipeline alignment along U.S. 89.

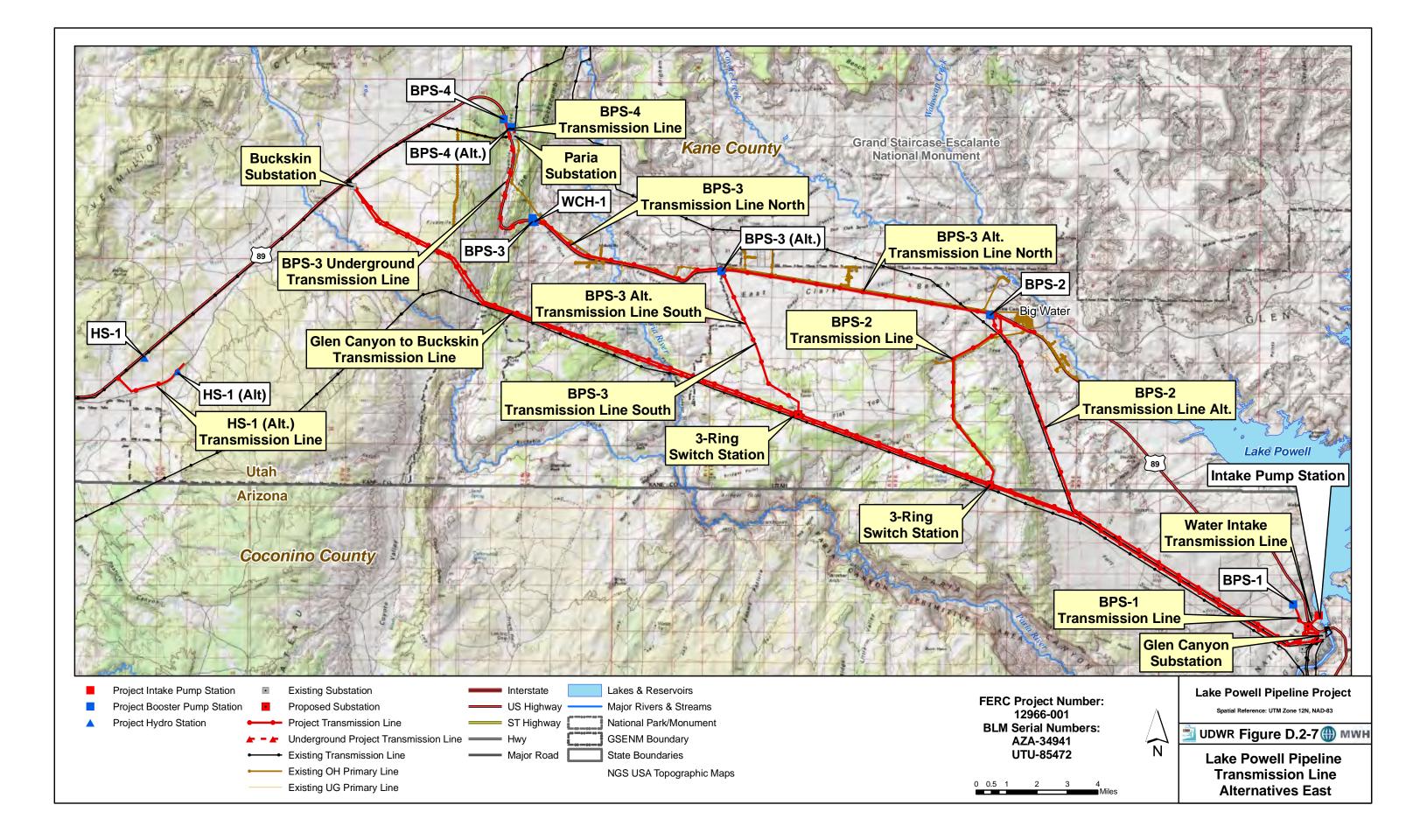
The penstock would parallel the south side of U.S. 89 west of the GSENM past Johnson Wash and follow Lost Spring Gap southwest, crossing U.S. 89 Alt. and Kanab Creek in the north end of Fredonia, Arizona. The penstock would run south paralleling Kanab Creek to Arizona State Route 389 and run west adjacent to the north side of this state highway through the Kaibab-Paiute Indian Reservation past Pipe Spring National Monument. The penstock would continue along the north side of Arizona State Route 389 through the west half of the Kaibab-Paiute Indian Reservation to 1.8 miles west of Cedar Ridge (intersection of Yellowstone Road with U.S. 89), from where it would follow the same alignment as the South Alternative to Sand Hollow Reservoir. HS-2 would be sited 0.5 mile west of Cedar Ridge along the north side of Arizona State Route 389.

The **Kane County Pipeline System** would convey the Lake Powell water from the Lake Powell Pipeline crossing Johnson Wash along U.S. 89 for about 1 mile north through a buried 24-inch diameter pipe in Kane County, Utah to a conventional water treatment facility located near the mouth of Johnson Canyon (Figure D.2-5).

D.2.2.3 Southeast Corner Alternative


The Southeast Corner Alternative consists of five systems: Intake, Water Conveyance, Hydro, Kane County Pipeline, and Cedar Valley Pipeline. The Intake, Water Conveyance, Kane County Pipeline and Cedar Valley Pipeline systems would be the same as described for the South Alternative.


The **Hydro System** would be the same as described for the South Alternative between High Point Regulating Tank-2 and the east boundary of the Kaibab-Paiute Indian Reservation. The penstock alignment would parallel the north side of the Navajo-McCullough Transmission Line corridor in Coconino County, Arizona through the southeast corner of the Kaibab-Paiute Indian Reservation for about 3.8 miles and then follow the South Alternative alignment south of the south boundary of the Kaibab-Paiute Indian Reservation, continuing to Sand Hollow Reservoir (Figure D.2-6).


D.2.2.4 Transmission Line Alternatives

Transmission line alternatives include the Intake (3 alignments), BPS-1, Glen Canyon to Buckskin, Buckskin Substation upgrade, Paria Substation upgrade, BPS-2, BPS-2 Alternative, BPS-3 North, BPS-3 South, BPS-3 Underground, BPS-3 Alternative North, BPS-3 Alternative South, BPS-4, BPS-4 Alternative, HS-1 Alternative, HS-2 South, HS-3 Underground, HS-4, HS-4 Alternative, Hurricane Cliffs Afterbay to Sand Hollow, Hurricane Cliffs Afterbay to Hurricane West, Sand Hollow to Dixie Springs, Cedar Valley Pipeline booster pump stations, and Cedar Valley Water Treatment Facility.

The proposed new **Intake Transmission Line** would begin at Glen Canyon Substation and run parallel to U.S. 89 for about 2,500 feet to a new switch station, cross U.S. 89 at the Intake access road intersection and continue northeast to the Intake substation. This 69 kV transmission line would be about 0.9 mile long in Coconino County, Arizona (Figure D.2-7). One alternative alignment would run parallel to an existing 138 kV transmission line to the west, turn north to the new switch station, cross U.S. 89 at the Intake access road intersection and continue northeast to the Intake substation. This 69 kV transmission line alternative would be about 1.2 miles long in Coconino County, Arizona (Figure D.2-7). Another alternative alignment would bifurcate from an existing transmission line and run west, then northeast to the new switch station, cross U.S. 89 at the Intake access road intersection and entry existing transmission line and run west, then northeast to the new switch station, cross U.S. 89 at the Intake access road intersection and entry existing transmission line and run west, then northeast to the new switch station, cross U.S. 89 at the Intake access road intersection and continue northeast to the Intake substation. This 69 kV transmission line alternative would be about 1.2 miles long in Coconino County, Arizona (Figure D.2-7). Another alternative alignment would bifurcate from an existing transmission line and run west, then northeast to the new switch station, cross U.S. 89 at the Intake access road intersection and continue northeast to the Intake substation. This 69 kV transmission line alternative would be about 1.3 miles long in Coconino County, Arizona (Figure D.2-7).

The proposed new **BPS-1 Transmission Line** would begin at the new switch station located on the south side of U.S. 89 and parallel the LPP Water Conveyance System alignment to the BPS-1 substation west of U.S. 89. This 69 kV transmission line would be about 1 mile long in Coconino County, Arizona (Figure D.2-7).

The proposed new **Glen Canyon to Buckskin Transmission Line** would consist of a 230 kV transmission line from the Glen Canyon Substation to the Buckskin Substation, running parallel to the existing 138 kV transmission line. This transmission line upgrade would be about 36 miles long through Coconino County, Arizona and Kane County, Utah (Figure D.2-7).

The existing **Buckskin Substation** would be upgraded as part of the proposed project to accommodate the additional power loads from the new 230 kV Glen Canyon to Buckskin transmission line. The substation upgrade would require an additional 5 acres of land within the GSENM adjacent to the existing substation in Kane County, Utah (Figure D.2-7).

The existing **Paria Substation** would be upgraded as part of the proposed project to accommodate the additional power loads to BPS-4 Alternative. The substation upgrade would require an additional 2 acres of privately-owned land adjacent to the existing substation in Kane County, Utah (Figure D.2-7).

The proposed new **BPS-2 Transmission Line** alternative would consist of a new 3-ring switch station along the existing 138 kV Glen Canyon to Buckskin Transmission Line and a new transmission line from the switch station to a new substation west of Big Water and a connection to BPS-2 substation in Kane County, Utah. The new transmission line would parallel an existing distribution line that runs northwest, north and then northeast to Big Water. This new 138 kV transmission line alternative would be about 7 miles long across Utah SITLA-administered land, with a 138 kV connection to the BPS-2 substation (Figure D.2-7).

The new **BPS-2 Alternative Transmission Line** would consist of a new 138 kV transmission line from Glen Canyon Substation parallel to the existing Rocky Mountain Power 230 kV transmission line, connecting to the BPS-2 substation west of Big Water. This new 138 kV transmission line alternative would be about 16.5 miles long in Coconino County, Arizona and Kane County, Utah crossing National Park Service-administered land, BLM-administered land and Utah SITLA-administered land (Figure D.2-7).

The new **BPS-3 Transmission Line North** alternative would consist of a new 138 kV transmission line from BPS-2 paralleling the south side of U.S. 89 within the Congressionally designated utility corridor west to BPS-3 at the east side of the Cockscomb geological feature. This new 138 kV transmission line alternative would be about 15.7 miles long in Kane County, Utah (Figure D.2-7).

The new **BPS-3 Transmission Line South** alternative would consist of a new 3-ring switch station along the existing 138 kV Glen Canyon to Buckskin Transmission Line and a new transmission line from the switch station north along an existing BLM road to U.S. 89 and then west along the south side of U.S. 89 within the Congressionally designated utility corridor to BPS-3 at the east side of the Cockscomb. This new 138 kV transmission line alternative would be about 12.3 miles long in Kane County, Utah (Figure D.2-7).

The new **BPS-3 Underground Transmission Line** alternative would consist of a new buried 24.9 kV transmission line (2 circuits) from the upgraded Paria Substation to BPS-3 on the east side of the Cockscomb geological feature. This new underground transmission line would be parallel to the east and south side of U.S. 89 and would be about 4.1 miles long in Kane County, Utah (Figure D.2-7).

The new **BPS-3** Alternative Transmission Line North alternative would consist of a new 138 kV transmission line from BPS-2 paralleling the south side of U.S. 89 west to BPS-3 Alternative near the GSENM east boundary

within the Congressionally-designated utility corridor. This new 138 kV transmission line alternative would be about 9.3 miles long in Kane County, Utah (Figure D.2-7).

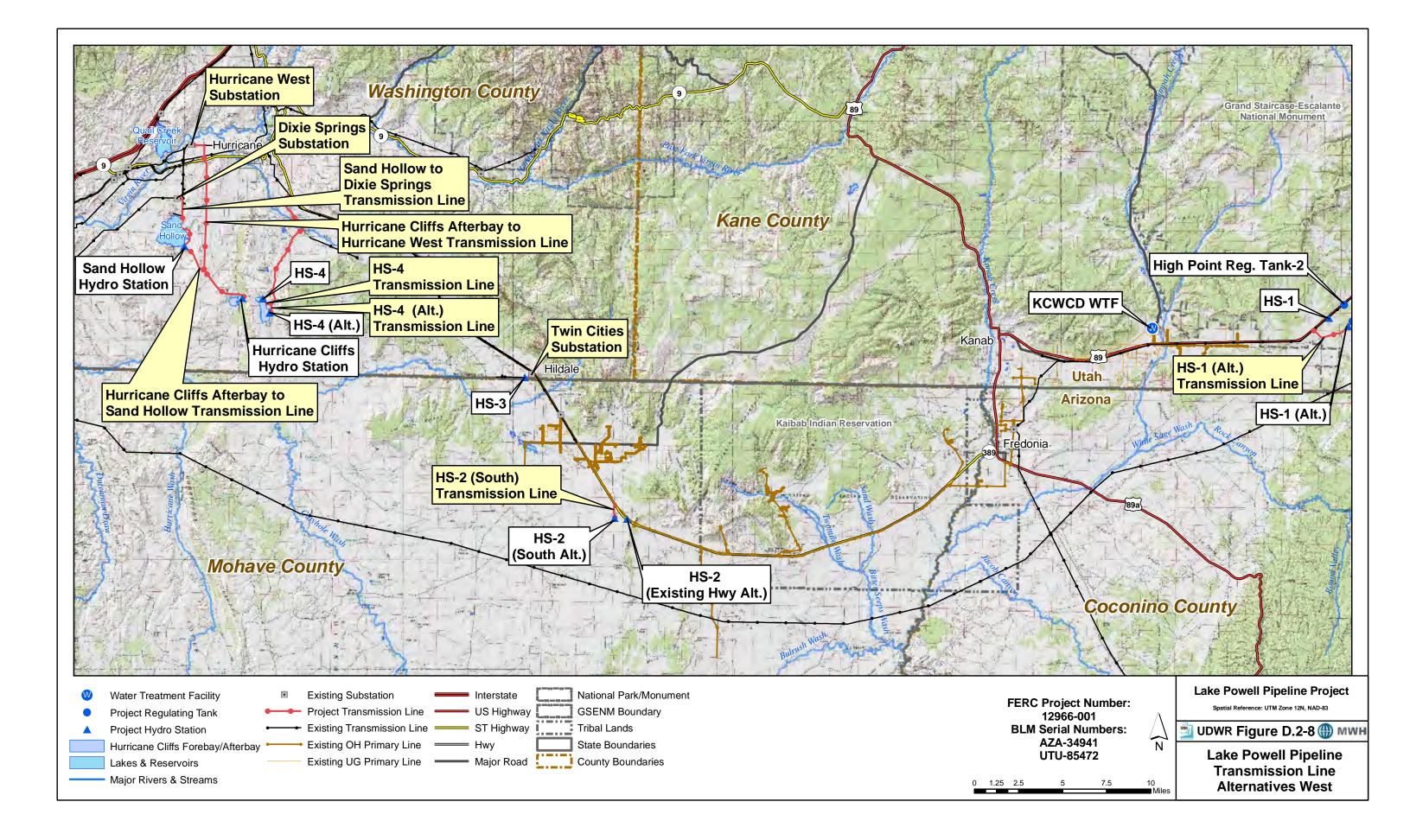
The proposed new **BPS-3 Alternative Transmission Line South** alternative would consist of a new 3-ring switch station along the existing 138 kV Glen Canyon to Buckskin Transmission Line and a new transmission line from the switch station north along an existing BLM road to BPS-3 Alternative near the GSENM east boundary and within the Congressionally-designated utility corridor. This new 138 kV transmission line alternative would be about 5.9 miles long in Kane County, Utah (Figure D.2-7).

The new **BPS-4 Transmission Line** alternative would begin at the upgraded Paria Substation and run parallel to the west side of U.S. 89 north to BPS-4 within the Congressionally designated utility corridor. This new 138 kV transmission line would be about 0.8 mile long in Kane County, Utah (Figure D.2-7).

The proposed new **BPS-4** Alternative Transmission Line would begin at the upgraded Paria Substation and run north to the BPS-4 Alternative. This 69 kV transmission line would be about 0.4 mile long in Kane County, Utah (Figure D.2-7).

The proposed new **HS-1** Alternative Transmission Line would begin at the new HS-1 Alternative and run southwest parallel to the K4020 road and then northwest parallel to the K4000 road to the U.S. 89 corridor where it would tie into the existing 69 kV transmission line from the Buckskin Substation to the Johnson Substation. This 69 kV transmission line would be about 3 miles long in Kane County, Utah (Figure D.2-7).

The proposed new **HS-2 South Transmission Line** alternative would connect the HS-2 hydroelectric station and substation along the South Alternative to an existing 138 kV transmission line paralleling Arizona State Route 389. This new 34.5 kV transmission line would be about 0.9 mile long in Mohave County, Arizona (Figure D.2-8).


The proposed new **HS-3 Underground Transmission Line** would connect the HS-3 hydroelectric station and substation to the existing Twin Cities Substation in Hildale City, Utah. The new 12.47 kV underground circuit would be about 0.6 mile long in Washington County, Utah (Figure D.2-8).

The proposed new **HS-4 Transmission Line** would consist of a new transmission line from the HS-4 hydroelectric station and substation north along an existing BLM road to an existing transmission line parallel to Utah State Route 59. The new 69 kV transmission line would be about 8.2 miles long in Washington County, Utah (Figure D.2-8).

The new **HS-4 Alternative Transmission Line** alternative would connect the HS-4 Alternative hydroelectric station and substation to an existing transmission line parallel to Utah State Route 59. The new 69 kV transmission line would be about 7.5 miles long in Washington County, Utah (Figure D.2-8).

The proposed new **Hurricane Cliffs Afterbay to Sand Hollow Transmission Line** would consist of a new 69 kV transmission line from the Hurricane Cliffs peaking power plant and substation, and run northwest to the Sand Hollow Hydro Station substation. This new 69 kV transmission line would be about 4.9 miles long in Washington County, Utah (Figure D.2-8).

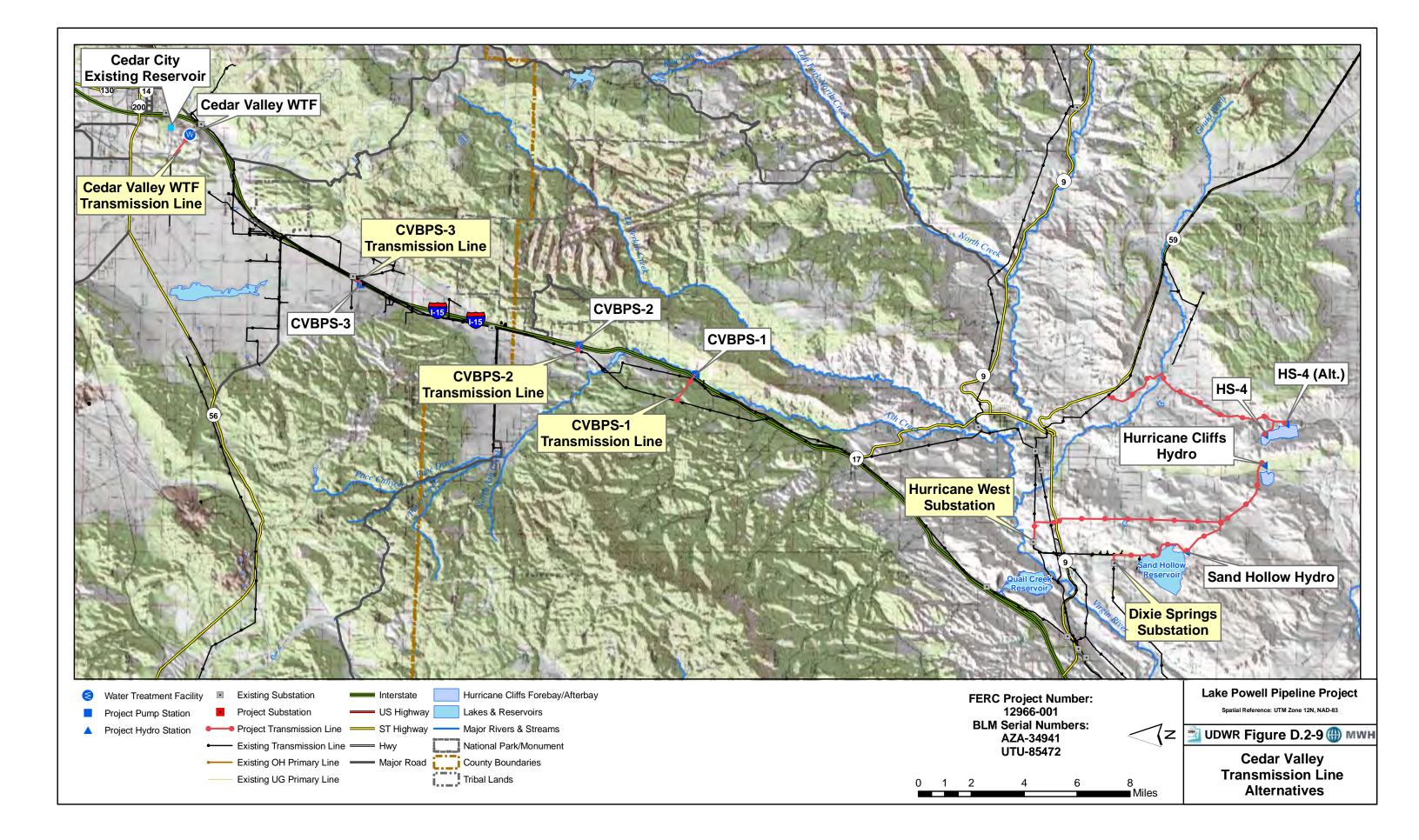
The proposed new **Hurricane Cliffs Afterbay to Hurricane West Transmission Line** would consist of a new 345 kV transmission line from the Hurricane Cliffs pumped storage power plant and run northwest and then north to the planned Hurricane West 345 kV substation. This new 345 kV transmission line would be about 10.9 miles long in Washington County, Utah (Figure D.2-8).

The proposed new **Sand Hollow to Dixie Springs Transmission Line** would consist of a new 69 kV transmission line from the Sand Hollow Hydro Station substation around the east side of Sand Hollow Reservoir and north to the existing Dixie Springs Substation. This new 69 kV transmission line would be about 3.4 miles long in Washington County, Utah (Figure D.2-8).

The three **Cedar Valley Pipeline** booster pump stations would require new transmission lines from existing transmission lines paralleling the Interstate 15 corridor. The new CBPS-1 transmission line would extend southeast over I-15 from the existing transmission line to the booster pump station substation for about 1.3 miles in Washington County, Utah (Figure D.2-9). The new CBPS-2 transmission line would extend east over I-15 from the existing transmission line to the booster pump station for about 0.2 mile in Washington County, Utah (Figure D.2-9). The new CBPS-3 transmission line would extend west over I-15 from the existing transmission line and southwest along the west side of Interstate 15 to the booster pump station substation for about 0.6 mile in Iron County, Utah (Figure D.2-9).

The **Cedar Valley Water Treatment Facility Transmission Line** would begin at an existing substation in Cedar City and run about 1 mile to the water treatment facility site in Iron County, Utah (Figure D.2-9).

D.2.3 Summary Description of No Lake Powell Water Alternative


The No Lake Powell Water Alternative would involve a combination of developing remaining available surface water and groundwater supplies, developing reverse osmosis treatment of existing low quality water supplies, and reducing residential outdoor water use in the WCWCD and CICWCD service areas. This alternative could provide a total of 86,249 acre-feet of water annually to WCWCD, CICWCD and KCWCD for M&I use without diverting Utah's water from Lake Powell.

D.2.3.1 WCWCD No Lake Powell Water Alternative

The WCWCD would implement other future water development projects currently planned by the District, develop additional water reuse/reclamation, and convert additional agricultural water use to M&I use as a result of urban development in agricultural areas through 2020. Remaining planned and future water supply projects through 2020 include the Ash Creek Pipeline (5,000 acre-feet per year), Crystal Creek Pipeline (2,000 acre-feet per year), and Quail Creek Reservoir Agricultural Transfer (4,000 acre-feet per year). Beginning in 2020, WCWCD would convert agricultural water to secondary use and work with St. George City to maximize existing wastewater reuse, bringing the total to 96,258 acre-feet of water supply per year versus demand of 98,427 acre-feet per year, incorporating currently mandated conservation goals. The WCWCD water supply shortage in 2037 would be 70,000 acre-feet per year, 1,000 acre-feet more than the WCWCD maximum share of the LPP water. Therefore, the WCWCD No Lake Powell Water Alternative needs to develop 69,000 acre-feet of water per year to meet comparable supply and demand requirements as the other action alternatives.

The WCWCD would develop a reverse osmosis (RO) advanced water treatment facility near the Washington Fields Diversion in Washington County, Utah to treat up to 40,000 acre-feet per year of Virgin River water with high total dissolved solids (TDS) concentration and other contaminants. The RO advanced water treatment facility would produce up to 36,279 acre-feet per year of water suitable for M&I use. The WCWCD would develop the planned Warner Valley Reservoir to store the diverted Virgin River water, which would be delivered to the RO advanced water treatment facility. The remaining 3,721 acre-feet per year of brine by-product from the RO treatment process would require evaporation and disposal meeting State of Utah water quality regulations.

The remaining needed water supply of 32,721 acre-feet per year to meet WCWCD 2037 demands would be obtained by reducing and restricting outdoor residential water use in the WCWCD service area. The Utah

Division of Water Resources (UDWR) estimated 2005 culinary water use for residential outdoor watering in the communities served by WCWCD was 102 gallons per capita per day (gpcd) (UDWR 2008a). This culinary water use rate is reduced by 30.5 gpcd to account for water conservation attained from 2005 through 2020, yielding 71.5 gpcd residential outdoor water use available for conversion to other M&I uses. The equivalent water use rate reduction to generate 32,721 acre-feet per year of conservation is 56.6 gpcd for the 2037 population within the WCWCD service area. Therefore, beginning in 2020, the existing rate of residential outdoor water use would be gradually reduced and restricted to 14.9 gpcd, or an 85.4 percent reduction in residential outdoor water use.

The combined 36,279 acre-feet per year of RO product water and 32,721 acre-feet per year of reduced residential outdoor water use would equal 69,000 acre-feet per year of M&I water to help meet WCWCD demands through 2037.

D.2.3.2 CICWCD No Lake Powell Water Alternative

The CICWCD would implement other future groundwater development projects currently planned by the District, purchase agricultural water from willing sellers for conversion to M&I uses, and convert additional agricultural water use to M&I use as a result of urban development in agricultural areas through 2020. Remaining planned and future water supply projects through 2020 include additional groundwater development projects (3,488 acre-feet per year), agricultural conversion resulting from M&I development (3,834 acre-feet per year), and purchase agricultural water from willing sellers (295 acre-feet per year). Beginning in 2020, CICWCD would have a total 19,772 acre-feet of water supply per year versus demand of 19,477 acre-feet per year, incorporating required progressive conservation goals. The CICWCD water supply shortage in 2060 would be 11,470 acre-feet per year. Therefore, the CICWCD No Lake Powell Water Alternative needs to develop 11,470 acre-feet of water per year to meet comparable supply and demand limits as the other action alternatives.

The remaining needed water supply of 11,470 acre-feet per year to meet CICWCD 2060 demands would be obtained by reducing and restricting outdoor residential water use in the CICWCD service area. The UDWR estimated 2005 culinary water use for residential outdoor watering in the communities served by CICWCD was 84.5 gpcd (UDWR 2007). A portion of this residential outdoor water would be converted to other M&I uses. The equivalent water use rate to obtain 11,470 acre-feet per year is 67.8 gpcd for the 2060 population within the CICWCD service area. Therefore, the existing rate of residential outdoor water use would be gradually reduced and restricted to 16.7 gpcd beginning in 2023, an 80 percent reduction in the residential outdoor water use rate between 2023 and 2060. The 11,470 acre-feet per year of reduced residential outdoor water use would be used to help meet the CICWCD demands through 2060.

D.2.3.3 KCWCD No Lake Powell Water Alternative

The KCWCD would use existing water supplies and implement future water development projects including new groundwater production, converting agricultural water rights to M&I water rights as a result of urban development in agricultural areas, and developing water reuse/reclamation. Existing water supplies (4,039 acrefeet per year) and 1,994 acrefeet per year of new ground water under the No Lake Powell Water Alternative would meet projected M&I water demand of 6,033 acrefeet per year within the KCWCD service area through 2060. The total potential water supply for KCWCD is about 12,140 acrefeet per year (4,039 acrefeet per year existing culinary plus secondary supply, and 8,101 acrefeet per year potential for additional ground water development up to the assumed sustainable ground water yield) without agricultural conversion to M&I supply. Short-term ground water overdrafts and new storage projects (e.g., Jackson Flat Reservoir) would provide reserve water supply to meet demands during drought periods and other water emergencies.

D.2.4 Summary Description of the No Action Alternative

No new intake, water conveyance or hydroelectric features would be constructed or operated under the No Action Alternative. The Utah Board of Water Resources' Colorado River water rights consisting of 86,249 acre-feet per year would not be diverted from Lake Powell and would continue to flow into the Lake until the water is used for another State of Utah purpose or released according to the operating guidelines. Future population growth as projected by the Utah Governor's Office of Planning and Budget (GOPB) would continue to occur in southwest Utah until water and other potential limiting resources such as developable land, electric power, and fuel begin to curtail economic activity and population in-migration.

D.2.4.1 WCWCD No Action Alternative

The WCWCD would implement other future water development projects currently planned by the District, develop additional water reuse/reclamation, convert additional agricultural water use to M&I use as a result of urban development in agricultural areas, and implement advanced treatment of Virgin River water. The WCWCD could also limit water demand by mandating water conservation measures such as outdoor watering restrictions. Existing and future water supplies under the No Action Alternative would meet projected M&I water demand within the WCWCD service area through approximately 2020. The 2020 total water supply of about 96,528 acrefeet per year would include existing supplies, planned WCWCD water supply projects, wastewater reuse, transfer of Quail Creek Reservoir supplies, and future agricultural water conversion resulting from urban development of currently irrigated lands. Each future supply source would be phased in as needed to meet the M&I demand associated with the forecasted population. The No Action Alternative would not provide WCWCD with any reserve water supply (e.g., water to meet annual shortages because of drought, emergencies, and other losses). Maximum reuse of treated wastewater effluent for secondary supplies would be required to meet the projected M&I water supply to meet projected water demands from 2020 through 2060. There would not provide adequate water supply to meet projected water demands from 2020 through 2060. There would be a potential water shortage of approximately 139,875 acre-feet per year in 2060 under the No Action Alternative (UDWR 2008b).

D.2.4.2 CICWCD No Action Alternative

The CICWCD would implement future water development projects including converting agricultural water rights to M&I water rights as a result of urban development in agricultural areas, purchasing "buy and dry" agricultural water rights to meet M&I demands, and developing water reuse/reclamation. The Utah State Engineer would act to limit existing and future ground water pumping from the Cedar Valley aquifer in an amount not exceeding the assumed sustainable yield of 37,600 ac-ft per year. Existing and future water supplies under the No Action Alternative meet projected M&I water demand within the CICWCD service area during the planning period through agricultural conversion of water rights to M&I use, wastewater reuse, and implementing "buy and dry" practices on irrigated agricultural land. Each future water supply source would be phased in as needed to meet the M&I demand associated with the forecasted population. The CICWCD No Action Alternative includes buying and drying of agricultural water rights covering approximately 8,000 acres between 2005 and 2060 and/or potential future development of West Desert water because no other potential water supplies have been identified to meet unmet demand. The No Action Alternative would not provide CICWCD with any reserve water supply (e.g., water to meet annual shortages because of drought, emergencies, and other losses) after 2010 (i.e., after existing supplies would be maximized).

D.2.4.3 KCWCD No Action Alternative

The KCWCD would use existing water supplies and implement future water development projects including new ground water production, converting agricultural water rights to M&I water rights as a result of urban development in agricultural areas, and developing water reuse/reclamation. Existing water supplies (4,039 acre-

feet per year) and 1,994 acre-feet per year of new ground water under the No Action Alternative would meet projected M&I water demand of 6,033 acre-feet per year within the KCWCD service area through 2060. The total potential water supply for KCWCD is about 12,140 acre-feet per year (4,039 acre-feet per year existing culinary plus secondary supply, and 8,101 acre-feet per year potential for additional ground water development up to the assumed sustainable ground water yield) without agricultural conversion to M&I supply. Short-term ground water overdrafts and new storage projects (e.g., Jackson Flat Reservoir) would provide reserve water supply to meet demands during drought periods and other water emergencies.

D.2.5 Alternatives Considered and Determined to be Impracticable

The following alternatives were considered and determined to be impracticable. A summary of why each alternative was determined to be impracticable is presented in the following sections.

D.2.5.1 Lone Rock Intake Pump Station Alternatives

Four intake pump station alternatives near Lone Rock in Lake Powell were considered. These intake pump station alternatives were sited in the Utah portion of Lake Powell as part of the All Utah Alignment Alternatives. Each intake pump station alternative involved extending an intake pipeline into Lake Powell near Lone Rock, with a pump station building constructed on the shore. Pipeline alignments from each pump station site extended west-northwest to U.S. Highway 89 and then followed the highway right-of-way. These intake pump station alternatives were determined impracticable for several reasons. The shallow depth and fluctuating levels of Lake Powell in the Lone Rock arm would not always provide a reliable water depth and supply for pumping to meet municipal and industrial (M&I) water needs. In some years, the intake pipelines for each of the Lone Rock intake pump station sites would be above the Lake Powell water surface elevation. The U.S. Bureau of Reclamation (Reclamation) evaluated the Lone Rock intake pump station sites and determined they would not provide a reliable water depth to meet the M&I needs during all years. Additionally, Reclamation recommended the intake pump station be sited near Glen Canyon Dam for security reasons because it would be adjacent to their ongoing operations at the dam. Siting of the intake pump station near Lone Rock would be remote, maintaining security would be difficult, and the cost of providing electrical power would be higher than at a Glen Canyon Dam intake pump station.

D.2.5.2 All Utah Alignment Alternatives

Several alignment alternatives were considered where the pipeline and all facilities would be located within Utah. One of the All Utah Alignment Alternatives would involve an intake pump station near Lone Rock, pipeline alignment along U.S. Highway 89 to Kanab, Utah, booster pump station at the Cockscomb geological feature, booster pump station west of Kanab pipeline up through the mountains west of Kanab to Sand Dunes Road and southwest along Sand Dunes Road, tunnel under the Canaan Mountain Wilderness Study Area (WSA) and Area of Critical Environmental Concern (ACEC) for six miles to east of Hildale City, pipeline along Utah State Route 59, pipeline across Little Creek Mountain to a peaking reservoir, and a pipeline through Gould Wash to Sand Hollow Reservoir. A second All Utah Alignment alternative would be similar except it would bypass Kanab and follow the Utah/Arizona state line west to the six-mile long tunnel, pipeline along Utah State Route 59, take a northern alignment across Little Creek Mountain to a peaking reservoir, and a pipeline through Gould Wash to Sand Hollow Reservoir. These All Utah Alignment Alternatives were determined impracticable because of significantly higher construction costs, higher operating costs, hydraulic limitations, uncertainties with siting the pipeline through active faults along and under the Canaan Mountain WSA and ACEC, and the lack of reliability for pumping water from the Lone Rock area intake pump station discussed in Section D.2.5.1.

D.2.5.3 Flat Top Alignment Alternative

The Flat Top Alignment Alternative was considered as an all Utah alternative to the pipeline parallel to U.S. Highway 89. This alternative would run west-southwest from the Lone Rock intake pump station and across U.S. Highway 89 for about seven miles (south of the highway), then northwest and west for about 13 miles across a high plateau where it would return to the U.S. Highway 89 corridor about 1.5 miles west of the GSENM east boundary. The Flat Top Alignment Alternative was determined to be impracticable because of significantly higher construction costs, higher operating costs, environmental impacts on land with little or no disturbance compared to paralleling the existing highway, impacts within the GSENM at the west end of the alignment, and the lack of reliability for pumping water from the Lone Rock area intake pump station discussed in Section D.2.5.1.

D.2.5.3 Honeymoon Trail and South Little Creek Mountain Alignment Alternative

The Honeymoon Trail and South Little Creek Mountain Alignment Alternative would start at the Lone Rock intake pump station, parallel U.S. Highway 89 to five miles east of Kanab, follow the Honeymoon Trail along the Utah state line and through the Kaibab-Paiute Indian Reservation, south around Lost Spring Mountain, north around the west side of Little Creek Mountain, and west across the Hurricane Cliffs to Sand Hollow Reservoir. This alignment alternative was determined to be impracticable because of higher construction cost, higher operating cost, and impacts on the historic Honeymoon Trail.

D.2.5.4 North Alignment Alternative

The North Alignment Alternative started at the Glen Canyon Dam intake pump station and paralleled U.S. Highway 89 to Kanab, continued along U.S. Highway 89 north of Kanab for five miles, west along Hancock Road for 6.5 miles, southwest along Sand Dunes Road, west on Cane Beds Road to Arizona State Route 389 to Colorado City, west-northwest along Utah State Route 59 around the north side of Little Creek Mountain or over the top of Little Creek Mountain, and west over the Hurricane Cliffs to Sand Hollow Reservoir. The Cedar Valley Pipeline started at Quail Creek Reservoir and followed the Interstate 15 corridor northeast to Cedar Valley, terminating at a groundwater recharge basin. The North Alignment Alternative was determined to be impracticable because of significantly higher construction costs, significantly higher operating costs, hydraulic limitations, and diminished energy recovery opportunity and adverse environmental impacts of crossing over the top of Little Creek Mountain. The Cedar Valley Pipeline alignment was determined to be impracticable because of high operating costs and lost hydraulic head from conveying the water down to Sand Hollow Reservoir and exchanging water out of Quail Creek Reservoir for conveyance to Cedar Valley. The Cedar Valley Groundwater Recharge Basin was determined to be impracticable because of confining layers severely limiting groundwater recharge.

D.2.5.5 South Powerline Alignment Alternative

The South Powerline Alignment Alternative would share the same alignment as the North Alignment Alternative to the west GSENM boundary, continue southwest through White Sage Wash, run south around the Kaibab-Paiute Indian Reservation, follow the Navajo-McCullough Transmission Line corridor to Clayhole Wash, and either run north along the west side of Lost Spring Mountain and Little Creek Mountain to Sand Hollow Reservoir or follow the Honeymoon Trail through the Hurricane Cliffs and run south and west of Sand Mountain to Sand Hollow Reservoir. The Cedar Valley Pipeline alignment would be the same as described in Section D.2.5.4. The South Powerline Alignment Alternative was determined to be impracticable because of significantly higher construction costs, higher operational costs, diminished energy recovery opportunity, and adverse environmental impacts on the historic Honeymoon Trail. The Cedar Valley Pipeline and Groundwater Recharge Basin were determined to be impracticable for the same reasons stated in Section D.2.5.4.

D.2.5.6 Cockscomb Tunnel Alignments

The Cockscomb Tunnel Alignments were considered as alternatives to paralleling U.S. Highway 89 through the Cockscomb geological feature. Three tunnel alignments were evaluated to convey the LPP water under pressure from the east side to the west side of the Cockscomb. Each tunnel alignment would connect with the LPP pipeline on the east side of the Cockscomb and trend northwest, with east portals in the exposed bedrock. Each of the west tunnel portals would be in the alluvium on the west side of the Cockscomb and would connect to a pipeline paralleling U.S. Highway 89. The Cockscomb Tunnel Alignments were determined to be impracticable because of the high construction cost, uncertainties with crossing the Cockscomb Fault through a tunnel, and difficulties with constructing tunnel portals in alluvium.

D.2.5.7 Hurricane Cliffs Alignments

The Hurricane Cliffs Alignments included six alternatives for conveying the LPP water through the Hurricane Cliffs and onto Sand Hollow Reservoir. These included, from north to south, the Willow Springs Alignment, the Gould Springs to Mollies Nipple Alignment, the Gould Springs Alignment, the Gould Springs to Mollies Nipple Alignment, the Gould Springs Alignment, the Gould Reservoir Alignment, and the Honeymoon Trail Alignment. The four northern-most alignments were linked to alternative alignments following Utah State Route 59 around the north side of Little Creek Mountain or alternative alignments over the top of Little Creek Mountain. The two southern-most alignments were linked to alternative alignments following the Honeymoon Trail south of Sand Hollow Reservoir. All of these alignments through the Hurricane Cliffs were determined to be impracticable because the alignments they would connect with are impracticable for reasons including high construction cost, hydraulic limitations, diminished energy recovery opportunity, and environmental impacts.

D.2.5.8 Sky Ranch Alignment

The Sky Ranch Alignment would run north from a small peaking afterbay below the Hurricane Cliffs and west along the south end of the Sky Ranch airport to Sand Hollow Reservoir. This alignment alternative was determined to be impracticable because of construction conflicts with air traffic across the south end of the Sky Ranch airport and siting the peaking afterbay on or near the Hurricane Fault.

D.2.6 Aquatic Ecosystems That Could be Adversely Impacted

D.2.6.1 Reservoirs

Reservoirs and lakes potentially impacted by the alternatives being considered would be limited to Lake Powell and Sand Hollow Reservoir. Construction activities would not directly affect open water. Horizontal tunnels at the Lake Powell water intake would be constructed from vertical shafts bored in the Navajo Sandstone, and no rock material would be deposited in Lake Powell as a result of the tunnel construction. The Sand Hollow Hydropower Station tailrace would drain into Sand Hollow Reservoir, with a low velocity channel connected to the reservoir. Water level fluctuations under operation all of the alternatives would be within the historical range of fluctuations and would not be measurable. Water quality in Sand Hollow Reservoir would remain nearly the same with LPP inflows because the LPP water quality is similar to Virgin River water quality upstream from the Pah Tempe Springs discharge. Total dissolved solids (TDS) modeling of Sand Hollow Reservoir water quality indicates a 60 mg/L TDS increase from the baseline TDS concentration of 600 mg/L starting in 2020 because salt loading would increase faster than outflow rates. The modeled TDS concentration would decrease to 576 mg/L as the LPP inflows increase and the overall TDS load in Sand Hollow Reservoir is reduced.

D.2.6.2 Streams and Rivers

A number of intermittent streams would be crossed under the alignment alternatives (see Wetlands and Riparian Resources Technical Report for more information). Construction impacts would be temporary and would occur during dry periods, minimizing potential effects on water quality and species. Standard operating procedures (SOPs, see Chapter 5 in the Wetland and Riparian Resources Technical Report) would be implemented to minimize effects. In addition, two perennial streams, the Paria River and LaVerkin Creek, would be crossed; some unavoidable impacts may occur in these water bodies.

D.2.6.3 Wetlands and Riparian Areas

All impacts on wetlands and riparian areas would be temporary. The temporary loss of wetland and riparian functions associated with the construction of pipelines for all alignment alternatives would represent a significant adverse impact.

A total of 0.01 acre of wetland occurs within the study area of the Cedar Valley Pipeline and the Transmission Line Alternatives at Gould Wash. This wetland would not be directly impacted by construction activities; however, indirect effects relating to sedimentation and water quality may occur. These would be minimized by the implementation of construction BMPs (see Chapter 5). The Transmission Line Alternatives would be implemented in conjunction with one of the alignment alternatives.

A total of 48.08 acres of riparian vegetation was mapped within the study area of the South Alternative and Southeast Corner Alternative and would be directly and indirectly affected by project construction activities. Temporary effects may include loss of vegetation, soil disturbance, disturbance of hydrological processes, sedimentation, and impacts to water quality. These would be minimized by the implementation of construction BMPs (see Chapter 5 in the Wetland and Riparian Resources Technical Report).

A total of 52.47 acres of riparian vegetation was mapped within the study area of the Existing Highway Alternative and would be directly and indirectly affected by project construction activities. Temporary effects may include loss of vegetation, soil disturbance, disturbance of hydrological processes, sedimentation, and impacts to water quality. These would be minimized by the implementation of construction BMPs (see Chapter 5 in the Wetland and Riparian Resources Technical Report).

Chapter D.3 Alternative Evaluation for Discharge of Dredged or Fill Material (40 CFR 230.10(a))

D.3.1 Comparison of Potential Adverse Impacts on Aquatic Ecosystem

Table D-2 provides a comparison of potential adverse impacts on aquatic ecosystems associated with the alternatives. This table addresses potential adverse aquatic ecosystem impacts associated with water quality, aquatic resources, wetland resources, threatened and endangered aquatic species, and sensitive aquatic species.

D.3.2 Practicable Alternatives to Discharge of Dredged or Fill Material in Special Aquatic Sites (40CFR230.10(a)(3))

Table D-3 presents a summary of practicable alternatives to discharge of dredged or fill material in special aquatic sites. Table D-3 addresses practicable alternatives with respect to impacts on wetlands, mudflats, vegetated shallows, and riffle and pool complexes.

D.3.3 Practicable Alternatives That Would Have Less Adverse Impact on Aquatic Ecosystems (40CFR230.10(a)(2))

A comparison of the practicable alternatives is shown in Table D-4. The alternatives are compared with regard to cost considerations, existing technologies, and logistics in light of overall project purposes.

Chapter D.4 Alternative Evaluation for Violations Caused by Discharge of Dredged or Fill Material (40 CFR 230.10(b))

Table D-5 compares alternative evaluations for violations caused by discharge of dredged or fill material. Included in Table D-5 is a comparison of potential violations of applicable state water quality standards, violations of applicable toxic effluent standards or prohibitions under Section 307 of the Clean Water Act, and threats to the continued existence of threatened or endangered species (as defined under the Endangered Species Act), or that results in possible destruction or adverse modification of critical habitat.

Chapter D.5 Potential Impacts on Physical and Chemical Components of the Aquatic Ecosystem (40 CFR 230.10(c) Subpart C)

Table D-6 provides a summary of potential impacts from the alternatives on physical and chemical components of the aquatic ecosystem. It includes a comparison of impacts on substrate, suspended particulates and turbidity, water, current patterns and water circulation, and normal water fluctuations.

Chapter D.6 Potential Impacts on Biological Characteristics of the Aquatic Ecosystem (40 CFR 230.10(c) Subpart D)

The potential impacts on biological characteristics of the aquatic ecosystem are presented for each of the alternatives in Table D-7. The potential impacts on threatened and endangered species, fish, crustaceans, mollusks, and other aquatic organisms in the food web, and other wildlife are presented.

Chapter D.7 Potential Impacts on Special Aquatic Sites (40 CFR 230.10(c) Subpart E)

Potential impacts associated with the project alternatives are presented in Table D-8 regarding special aquatic sites including wetlands, mudflats, vegetated shallows, and riffle and pool complexes.

Chapter D.8 Potential Effects on Human Use Characteristics (40 CFR 230.10(c) Subpart F)

Table D-9 provides a comparison of the potential effects on human use characteristics for the various project alternatives. It includes the effects on municipal and private water supplies, recreational fisheries, other water-related recreation, and aesthetics.

Chapter D.9 General Evaluation of Dredged or Fill Materials (40 CFR 230.60 Subpart G)

D.9.1 Description of Dredged or Fill Materials

A description of dredged or fill materials that are anticipated for use in the project alternatives, including both excavated and imported materials is provided in Table D-10. Gravel, sand, and other naturally occurring fill materials are described, as well as rock riprap, excavated earth and concrete.

D.9.2 Potential for Contamination of Dredged or Fill Materials

An evaluation of the potential for contamination of dredged or fill materials that would be used in the project alternatives is presented in Table D-11. The information presented in this table is based on the UDWR's current knowledge of the materials to be used or encountered during construction.

Chapter D.10 Actions to Minimize Adverse Effects (40 CFR 230.10(d) Subpart H)

Table D-12 summarizes actions that would be taken to minimize the adverse effects of the project alternatives. The actions identified in Table D-12 would address the location of discharges, the materials to be discharged, control of materials after discharge, the methods of dispersion, the applicable discharge technologies, the effects on plant and animal populations, the effects on human uses, and possible other actions.

Chapter D.11 Factual Determinations of Impacts (Short-Term and Long-Term) (40 CFR 230.11)

The factual determinations of short-term and long-term impacts associated with the project alternatives are shown in Table D-13. These determinations address physical substrate, water quality, circulation and fluctuation, suspended particulate and turbidity, aquatic ecosystem and organisms, proposed disposal sites, cumulative effects on the aquatic ecosystem, and secondary effects on the aquatic ecosystem.

Chapter D.12 Alternative with Least Adverse Impact on Aquatic Ecosystems and Wetlands

Tables D-2 through D-13 present the specific impacts, both adverse and beneficial, on aquatic ecosystems and wetlands as well as the human use characteristics of the alternatives.

D.12.1 South Alternative

The South Alternative would temporarily affect 48.08 acres of riparian vegetation, including 11.72 acres of jurisdictional waters. No wetlands would be affected beyond the 0.01-acre wetland area in Gould Wash that could be affected under the Cedar Valley Pipeline and the Transmission Line Alternatives (in conjunction with all Alignment Alternatives). Acreages listed here include all areas within the study area. Impacts would include direct and indirect impacts. All impacts would be temporary; however, the temporary loss of wetland and riparian functions associated with the construction of pipelines would represent a significant adverse impact.

Intermittent stream crossing construction would occur during dry periods, minimizing potential effects on water quality and species. Standard operating procedures (SOPs, see Chapter 5 in the Wetland and Riparian Resources Technical Report) would be implemented to minimize effects. Two perennial streams, the Paria River and LaVerkin Creek, would be crossed by pipelines; some unavoidable impacts would occur in these water bodies. Construction of these pipeline crossings would be performed during low flow conditions or when there is no flow in the streams. Temporary diversions of these streams through culvert pipes would be performed to temporarily dewater the channels during pipeline installation. Water bladders would be used as temporary coffer dams to divert the water into the culvert pipes and around the dewatered work zone. The culvert pipes would be placed at the stream slope to convey the water at a similar velocity as the channel and to avoid turbidity downstream of the dewatered work zone. Excavated trenches would be dewatered by pumping to portable settling tanks and land applying the settled water.

The temporary diversions would have no measurable impacts on water quality, stream bed substrates, threatened and endangered species, sensitive aquatic species, resident fish, and other wildlife that inhabit adjacent riparian areas. Benthic invertebrates within the temporarily dewatered stream channel reaches would be subject to mortality. Riparian vegetation cleared for pipeline installation would be removed from the stream banks. Following restoration of the stream beds and banks to original contour and conditions, benthic invertebrates would repopulate the restored reaches through drift, movement, and reproduction. Riparian shrubs salvaged during the clearing would be replanted along the stream banks. Endemic riparian grasses would be seeded and mixed into the disturbed soils to help re-establish vegetation cover.

Water quality in Lake Powell would not measurably change from baseline conditions during operations. Water temperature has been simulated to decrease by 0.1 °C at depths greater than 25 meters. Dissolved oxygen concentration has been simulated to decrease by 0.1 mg/L at depths of 25 and 50 meters and 0.3 mg/L at depths exceeding 100 meters. These potential changes in water quality cannot be reliably measured with instruments and would have no measurable effects on aquatic resources in Lake Powell.

Water quality in flow releases from Glen Canyon Dam would not measurably change from baseline conditions during operations. Glen Canyon Dam release temperature has been simulated to decrease 0.1 °C during the winter and spring months and simulated to increase 0.1 °C during the summer and fall months. Glen Canyon Dam release dissolved oxygen concentration has been simulated to decrease 0.11 mg/L from baseline conditions. Glen Canyon Dam total dissolved solids (TDS) concentration has been simulated to increase less than 1 mg/L from baseline conditions.

Simulated TDS concentration in Sand Hollow Reservoir would initially increase from 600 mg/L to approximately 660 mg/L because salt loads would increase faster than outflows. Simulated TDS concentration would then decrease to 576 mg/L as Lake Powell Pipeline inflows increase because the Lake Powell water has a lower TDS concentration than the Virgin River water diverted into Sand Hollow Reservoir.

D.12.2 Existing Highway Alternative

The Existing Highway Alternative would temporarily affect 52.47 acres of riparian vegetation, including 11.56 acres of jurisdictional waters. No wetlands would be affected beyond the 0.01-acre wetland area in Gould Wash that could be affected under the Cedar Valley Pipeline and the Transmission Line Alternatives (in conjunction with all Alignment Alternatives). Acreages listed here include all areas within the study area. Impacts would include direct and indirect impacts. All impacts would be temporary; however, the temporary loss of wetland and riparian functions associated with the construction of pipelines would represent a significant adverse impact.

Intermittent stream crossing construction would occur during dry periods, minimizing potential effects on water quality and species. Standard operating procedures (SOPs, see Chapter 5 in the Wetland and Riparian Resources Technical Report) would be implemented to minimize effects. Two perennial streams, the Paria River and La Verkin Creek, would be crossed; some unavoidable impacts would occur in these water bodies. Construction of these pipeline crossings would be performed during low flow conditions or when there is no flow in the streams. Temporary diversions of these streams through culvert pipes would be performed to temporarily dewater the channels during pipeline installation. Water bladders would be used as temporary coffer dams to divert the water into the culvert pipes and around the dewatered work zone. The culvert pipes would be placed at the stream slope to convey the water at a similar velocity as the channel and to avoid turbidity downstream of the dewatered work zone. Excavated trenches would be dewatered by pumping to portable settling tanks and land applying the settled water.

Impacts during construction and operation would be the same as described for the South Alternative in Section D.12.1.

D.12.3 Southeast Corner Alternative

The South Alternative would temporarily affect 48.08 acres of riparian vegetation, including 11.72 acres of jurisdictional waters. No wetlands would be affected beyond the 0.01-acre wetland area in Gould Wash that would be affected under the Cedar Valley Pipeline and the Transmission Line Alternatives (in conjunction with all Alignment Alternatives). Acreages listed here include all areas within the study area. Impacts would include direct and indirect impacts. All impacts would be temporary; however, the temporary loss of wetland and riparian functions associated with the construction of pipelines would represent a significant adverse impact.

Intermittent stream crossing construction would occur during dry periods, minimizing potential effects on water quality and species. Standard operating procedures (SOPs, see Chapter 5 in the Wetland and Riparian Resources Technical Report) would be implemented to minimize effects. Two perennial streams, the Paria River and La Verkin Creek, would be crossed; some unavoidable impacts would occur in these water bodies. Construction of these pipeline crossings would be performed during low flow conditions or when there is no flow in the streams. Temporary diversions of these streams through culvert pipes would be performed to temporarily dewater the channels during pipeline installation. Water bladders would be used as temporary coffer dams to divert the water into the culvert pipes and around the dewatered work zone. The culvert pipes would be placed at the stream slope to convey the water at a similar velocity as the channel and to avoid turbidity downstream of the dewatered work zone. Excavated trenches would be dewatered by pumping to portable settling tanks and land applying the settled water.

Impacts during construction and operation would be the same as described for the South Alternative in Section D.12.1.

D.12.4 No Lake Powell Water Alternative

The No Lake Powell Water Alternative would have no direct adverse impacts on the aquatic ecosystem because there would no construction affecting wetlands, streams, lakes or reservoirs. Restricting residential outdoor watering in the St. George metropolitan area and Cedar Valley could result in reduced groundwater recharge and cause adverse indirect impacts by decreasing riparian vegetation, decreasing stream flow, increasing stream water temperatures and decreasing suitable habitat for fish and other aquatic organisms.

D.12.5 No Action Alternative

The No Action Alternative would have no direct adverse impacts on the aquatic ecosystem because there would no construction and no operational change from baseline.

D.12.6 Conclusion

Effects on aquatic ecosystems and wetlands are similar between the three alignment alternatives. The South Alternative and Southeast Corner Alternative would have 4.39 acres less impact on riparian vegetation, and a 0.16 acre more impact on jurisdictional waters than the Existing Highway Alternative. All alignment alternatives would have the same level of impact on jurisdictional wetlands. All alignment alternatives would have the same temporary impacts on aquatic resources, water quality, stream bed substrate, and other resources. All alignment alternatives alternatives would have the same operational impacts on water quality in Lake Powell, Glen Canyon Dam releases, and Sand Hollow Reservoir. The South Alternative and Southeast Corner Alternative are determined to have the least adverse impact on aquatic ecosystems and wetlands.

A summary of impacts on the aquatic ecosystem is presented below for the Alignment Alternatives.

South Alternative	Existing Highway Alternative	Southeast Corner Alternative
Surface Water Hydrology	Surface Water Hydrology	<u>Surface Water Hydrology</u>
	Temporary impacts would occur from	Temporary impacts would occur from
diversions of the Paria River and LaVerkin	diversions of the Paria River and LaVerkin	diversions of the Paria River and LaVerkin
	Creek during construction of pipeline	Creek during construction of pipeline
	crossings. Streamflows would be diverted	crossings. Streamflows would be diverted
through culvert pipes. Virgin River flows	through culvert pipes. Virgin River flows	through culvert pipes. Virgin River flows
would not measurably change from LPP	would not measurably change from LPP	would not measurably change from LPP
return flows.	return flows.	return flows.
Water Ouality	Water Ouality	Water Onality
Lake Powell. Glen Canvon	Water quality in Lake Powell. Glen Canvon	Water quality in Lake Powell. Glen Canvon
	Dam releases, and the Paria River and	Dam releases, and the Paria River and
v	LaVerkin Creek would not measurably	LaVerkin Creek would not measurably
change during construction and operations.	change during construction and operations.	change during construction and operations.
Total dissolved solids (TDS) concentration	Total dissolved solids (TDS) concentration	Total dissolved solids (TDS) concentration
	would initially increase from 600 mg/L to	would initially increase from 600 mg/L to
hen	about 660 mg/L in Sand Hollow and then	about 660 mg/L in Sand Hollow and then
to 576 mg/L as LPP inflows	decrease to 576 mg/L as LPP inflows	decrease to 576 mg/L as LPP inflows
increase.	increase.	increase.
Aquatic Resources	Aquatic Resources	Aquatic Resources
Fish and other aquatic resources in Lake	Fish and other aquatic resources in Lake	Fish and other aquatic resources in Lake
Powell, the Colorado River downstream of	Powell, the Colorado River downstream of	Powell, the Colorado River downstream of
Glen Canyon Dam, and in Sand Hollow	Glen Canyon Dam, and in Sand Hollow	Glen Canyon Dam, and in Sand Hollow
Reservoir would have no measurable impacts.	Reservoir would have no measurable impacts.	Reservoir would have no measurable impacts.
Fish in the Paria River and LaVerkin Creek	Fish in the Paria River and LaVerkin Creek	Fish in the Paria River and LaVerkin Creek
would have no direct impacts. Benthic	would have no direct impacts. Benthic	would have no direct impacts. Benthic
invertebrates would be adversely impacted in i	invertebrates would be adversely impacted in	invertebrates would be adversely impacted in
dewatered reaches of these streams during	dewatered reaches of these streams during	dewatered reaches of these streams during
s to enable pipeline	temporary diversions to enable pipeline	temporary diversions to enable pipeline
crossing installation.	crossing installation.	crossing installation.

Summary of Advers	Summary of Adverse Impacts on the Aquatic Ecosystem for the Alignment Alternatives	ignment Alternatives Page 2 of 2
South Alternative	Existing Highway Alternative	Southeast Corner Alternative
Wetland Resources	Wetland Resources	Wetland Resources
A total of 0.01 acre of wetland occurs within	A total of 0.01 acre of wetland occurs within	A total of 0.01 acre of wetland occurs within
the study area at Gould Wash and could be	the study area at Gould Wash and could be	the study area at Gould Wash and could be
indirectly affected.	indirectly affected.	indirectly affected.
Riparian Resources	Riparian Resources	Riparian Resources
A total of 48.08 acres of riparian vegetation	A total of 52.47 acres of riparian vegetation	A total of 48.08 acres of riparian vegetation
(jurisdictional and non-jurisdictional) was	(jurisdictional and non-jurisdictional) was	(jurisdictional and non-jurisdictional) was
mapped within the study area and would be	mapped within the study area and would be	mapped within the study area and would be
directly and indirectly affected. Standard	directly and indirectly affected. Standard	directly and indirectly affected. Standard
operating procedures (SOPs, see Chapter 5 in	operating procedures (SOPs, see Chapter 5 in	operating procedures (SOPs, see Chapter 5 in
the Wetland and Riparian Resources	the Wetland and Riparian Resources	the Wetland and Riparian Resources
Technical Report) would be implemented to	Technical Report) would be implemented to	Technical Report) would be implemented to
minimize impacts.	minimize impacts.	minimize impacts.
Jurisdictional Waters	Jurisdictional Waters	Jurisdictional Waters
A total of 11.72 acres of jurisdictional waters	A total of 11.56 acres of jurisdictional waters	A total of 11.72 acres of jurisdictional waters
were mapped within the study area and would	were mapped within the study area and would	were mapped within the study area and would
be directly and indirectly affected. Standard	be directly and indirectly affected. Standard	be directly and indirectly affected. Standard
operating procedures (SOPs, see Chapter 5 in	operating procedures (SOPs, see Chapter 5 in	operating procedures (SOPs, see Chapter 5 in
the Wetland and Riparian Resources	the Wetland and Riparian Resources	the Wetland and Riparian Resources
Technical Report) would be implemented to	Technical Report) would be implemented to	Technical Report) would be implemented to
minimize impacts.	minimize impacts.	minimize impacts.
Aquatic Recreation Resources	Aquatic Recreation Resources	Aquatic Recreation Resources
Boating near the Lake Powell intake and Sand	Boating near the Lake Powell intake and Sand	Boating near the Lake Powell intake and Sand
Hollow hydro station tailrace would be	Hollow hydro station tailrace would be	Hollow hydro station tailrace would be
restricted during construction activities.	restricted during construction activities.	restricted during construction activities.
Potential recreational fishing in LaVerkin	Potential recreational fishing in LaVerkin	Potential recreational fishing in La Verkin
Creek in the dewatered reach would be	Creek in the dewatered reach would be	Creek in the dewatered reach would be
adversely impacted during pipeline crossing	adversely impacted during pipeline crossing	adversely impacted during pipeline crossing
construction activities.	construction activities.	construction activities.

D.13 Findings of Compliance - Comparison of D.11 to D.3 through D.10 (40 CFR 230.12)

Factual determinations in Section D.11 (Table D-13) are supported by the materials presented in Sections D.3 (Table D-2) through D.10 (Table D-12).

D.13.1 Discharge Sites Complying with Requirements of 404(b)(1) Guidelines

All discharge sites would comply with 404(b)(1) guidelines.

D.13.2 Discharge Sites Complying with Requirements of 404(b)(1) Guidelines with Inclusion of Actions to Minimize Adverse Effects

Same as Section D.13.1.

D.13.3 Discharge Sites Not Complying with Requirements of 404(b)(1) Guidelines

None.

D.13.3.1 Practicable Alternatives with Less Adverse Impact on the Aquatic Ecosystem

None.

D.13.3.2 Significant Degradation of Aquatic Ecosystem

Significant degradation of the aquatic ecosystem by the alternatives is summarized in Section D.12.

D.13.3.3 Appropriate and Practicable Measures to Minimize Harm on the Aquatic Ecosystem Not Included

All appropriate and practicable measures to minimize harm on the aquatic ecosystem are included in the SOPs outlined in Chapter 5 of the Wetlands and Riparian Resources Technical Report.

				r	
T (Alignment Alternatives		No Lake Powell Water	No Action Alternative
Feature	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	Alternative	
Intake	The intake pump station would be constructed and operated adjacent to the west side of Lake Powell approximately 2,000 feet northwest of Glen Canyon Dam in Coconino County, Arizona (Figure D.2-1). The enclosed pump station building would house vertical turbine pumps with electric motors, electrical controls, and other equipment at a ground level elevation of 3,745 feet mean sea level (MSL).	Same as South Alternative	Same as South Alternative	A reverse osmosis (RO) treatment facility would be constructed in St. George to treat Virgin River water for blending with conventionally treated water and distribution.	Not constructed
Water Conveyance	Lake Powell water would be conveyed from the Intake System for about 51 miles through a buried 69-inch diameter pipeline parallel with U.S. 89 in Coconino County, Arizona and Kane County, Utah to a buried regulating tank on the south side of U.S. 89 at ground level elevation 5,695 feet MSL, which is the LPP project topographic high point (Figure D.2-1). The pipeline would be sited within a utility corridor established by Congress in 1998 which extends 500 feet south and 240 feet north of the U.S. 89 centerline on public land administered by the Bureau of Land Management (BLM) (U.S. Congress 1998). Four booster pump stations located along the pipeline would pump the water under pressure to the high point regulating tank.	Same as South Alternative	Same as South Alternative	Not constructed	Not constructed
Hydro	Lake Powell water would be conveyed from the regulating tank at the high point at ground elevation 5,695 feet MSL for about 87 miles through a buried 69-inch diameter penstock in Kane and Washington counties, Utah and Coconino and Mohave counties, Arizona to Sand Hollow Reservoir near St. George, Utah (Figure D.2-2). Four in-line hydro generating stations with substations located along the penstock would generate electricity and help control water pressure in the penstock.	Lake Powell water would be conveyed from the regulating tank at the high point at ground elevation 5,695 feet MSL for about 80 miles through a buried 69-inch diameter penstock in Kane and Washington counties, Utah and Coconino and Mohave counties, Arizona to Sand Hollow Reservoir near St. George, Utah (Figure D.2-4). Four in-line hydro generating stations located along the penstock would generate electricity and help control water pressure in the penstock.	Same as the South Alternative from the regulating tank at the high point at ground elevation 5,695 feet MSL to the east boundary of the Kaibab Indian Reservation. The penstock alignment would parallel the north side of the Navajo-McCullough Transmission Line corridor in Coconino County, Arizona through the southeast corner of the Kaibab Indian Reservation for about 3.8 miles and then follow the South Alternative alignment south of the south boundary of the Kaibab Indian Reservation, continuing to Sand Hollow Reservoir (Figure D.2-5).	Not constructed	Not constructed
Kane County Pipeline	Lake Powell water would be conveyed from the Lake Powell Pipeline at the west GSENM boundary for about 8 miles through a buried 24- inch diameter pipe in Kane County, Utah to a conventional water treatment facility located near the mouth of Johnson Canyon. The pipeline would parallel the south side of U.S. 89 across Johnson Wash and then run north to the new water treatment facility site (Figure D.2- 2).	Lake Powell water would be conveyed from the Lake Powell Pipeline crossing Johnson Wash along U.S. 89 for about 1 mile north through a buried 24-inch diameter pipe in Kane County, Utah to a conventional water treatment facility located near the mouth of Johnson Canyon (Figure D.2-4).	Same as South Alternative	Not constructed	Not constructed
Cedar Valley Pipeline	Lake Powell water would be conveyed from the Lake Powell Pipeline just upstream of HS-4 for about 58 miles through a buried 36-inch diameter pipeline in Washington and Iron counties, Utah to a conventional water treatment facility in Cedar City, Utah (Figure D.2- 3). Three booster pump stations located along the pipeline would pump the water under pressure to the new water treatment facility.	Same as South Alternative	Same as South Alternative	Not constructed	Not constructed
Transmission Line Alternatives	Include the Intake, BPS-1, Glen Canyon to Buckskin, Buckskin to Paria, Paria Substation, BPS-2, BPS-2 Alternative, BPS-3 North, BPS- 3 South, BPS-3 Alternative North, BPS-3 Alternative South, BPS-4, HS-2 South, HS-4, Hurricane Cliffs Afterbay to Sand Hollow, Hurricane Cliffs Afterbay to Hurricane West, Sand Hollow to Dixie Springs, Cedar Valley Pipeline booster pump stations, and Cedar Valley Water Treatment Facility (see Figures D.2-6, D.2-7 and D.2-8).	Same as South Alternative	Same as South Alternative	Not constructed	Not constructed

Table D-2 Table D-2 Rest of the transmission of Potential Impacts on Aquatic Exosystem Page 106 Exosystem South Alternatives Maternatives							
Alignment Alternatives Alignment Alternatives South Alternative No Lake Powell Water No Action. South Alternative Existing Highway South Alternative Existing Highway South Alternative No Action. South Alternative Existing Highway South Alternative Existing Highway South Alternative No Action. Standard Operating Construction: Construction:<			Ŭ	Ta (D.3.1) Comparison of Potenti	ble D-2 ial Impacts on Aquatic Ecosys	items	Dorro 1 of 6
South AlternativeExisting HighwaySoutheast CornerNo Lake Powell waterSouth AlternativeConstruction:Construction:No Laker Powell waterConstruction:Same as South AlternativeConstruction:No Laker Powell waterSandard OperatingSame as South AlternativeConstruction:No Laker Powell waterSandard OperatingSame as South AlternativeConstruction:No Laker Powell waterSandard OperatingSame as South AlternativeConstruction:No Laker Powell waterwater quality duringconstruction would includeSame as South AlternativeNo Laker Powell watermeasures described in theWetlands and RiporianTechnical Report, Chapter 5.ConstructionTemporary but unavoidableTechnical Report, Chapter 5.Operation:Same as South AlternativeTemporary but unavoidableTemporary but unavoidableDecrease of Laker Powell waterTemporary but unavoidableTechnical Report, Chapter 5.Operation:Same as South AlternativeTemporary but unavoidableTemporary but unavoidableDecrease of Laker Powell waterTemporary but unavoidableTechnical Report, CherrativeSame as South AlternativeDecrease of Laker Powell waterTemporary but unavoidableTechnical Report, CherrativeDecrease of Laker Powell waterDecrease of Laker Powell waterTemporary but unavoidableTemporary but unavoidableDecrease of Laker PowellandDecrease of Laker PowellandTemporary but unavoidableTemporary but unavoidableDecrease of Laker Powelland<	1						1 age 1 01 0
Construction: Standard Operation: Standard Operation: Standard Operation: Standard Operation: Standard Operation: Standard Operation: 		Ecosystem	South Alternative		Southeast Corner Alternative	No Lake Powell Water Alternative	No Action Alternative
 Another and sources of an an and source and measures described in the measures described decrease of 1 mg/L at depths greater than 100 Derration: Operation: Operation: Operation: Monitoring: Monitoring:	1		Construction: Standard Operating Procedures (SODs) to protect	Construction : Same as South Alternative	Construction : Same as South Alternative	Construction: RO Treatment Facility	Construction: No features would be
measures described in the Wetlands and Riparian Technical Report, Chapter 5. measures described in the Wetlands and Riparian Termporary but unavoidable impacts on water quality (urbidity) may occur in perennial waterways (Paria River and LaVerkin Creek). measures described in an approved landfil. Temporary but unavoidable impacts on water quality (urbidity) may occur in perennial waterways (Paria River and LaVerkin Creek). Operation: Stream water temperatures could permanently increase because groundwater comparation: Simulated Lake Powell water of 2° at depths greater than 0.1°C at depths greater than 100 meters. Operation: Same as South Alternative south Alternative depths greater than 100 meters. Mitigation: Same as South Alternative meter as South Alternative depths greater than 100 meters. Mitigation: Same as South Alternative meter as South Alternative meters as 0.1°C during: Same as South Alternative depths greater than 100 meters. Mitigation: Same as South Alternative meas south Alte			water quality during			would not affect ward quality. Brine would be evaporated and	
Technical Report, Chapter 5.Technical Report, Chapter 5.Termporary but unavoidable impacts on water quality (urbidity) may occur in perennial waterways (Paria River and LaVerkin Creek).Termporatures could permanently increase because groundwater termperatures could permanently increase because groundwaterOperation: Simulated Lake Powell water turbidity) may occur in perennial waterways (Paria River and LaVerkin Creek).Operation: Simulated Lake Powell water termperatures could permanently increase 0.1 deperation: Simulated Lake Powell water comportative would decrease 0.1 categoris and South Alternative dissolved oxygen Simulated Lake Powell water termperatures could because groundwater termperatures could decrease 0.1 mg/L at depths greater than 100 meters.Operation: Same as South Alternative Mitigation: Same as South Alternative Monitoring: Same as South Alternative Monitoring:Operation: Decrease or and Cedar Valley would decrease or and Cedar Valley because groundwater termperatures would decrease 0.1 mg/L at depths greater than 100 meters.Operation: Same as South Alternative Monitoring: Same as South Alternative Monitoring: Same as South Alternative would decrease 0.1 mg/L during the would decrease 0.1 °C du			measures described in the Wetlands and Riparian			residual solids would be disnosed in an	
Temporary but unavoidable impacts on water quality (urbidity) may occur in peremula waterways (Paria (urbidity) may occur in peremula waterways (Paria (urbidity) may occur in peremula water and tay increase (urbidity) may occur in peration: Operation: Simulated Lake Powell water temperatures could permanently increase outh Alternative or one oncentrations would decrease one as South Alternative or one onters, and decrease 0.1 mg/L at depths area and Cedar Valley would decrease 0.1 mg/L at depths area and Cedar Valley would decrease 0.1 mg/L at depths of 25 and 50 meters, and would decrease 0.1 mg/L at depths area and Cedar Valley would increase 0.1 mg/L at depths area and Cedar Valley would increase 0.1 mg/L at depths area and Cedar Valley becrease 0.1 mg/L at depths area and Cedar Valle			Technical Report, Chapter 5.			approved landfill.	
(urbidity) may occur in peremulal waterways (Paria rementity) may occur in peremulative Lake Powell water Simulated Lake Powell water temperatures could beration:Stream water temperatures could permanently increase because groundwater recharge in the Simulated dissolved oxygen concentrations would decrease 0.1 mg/L at depths greater than 100Stream water temperatures could permanently increase because groundwater recharge in the Simulated dissolved oxygen concentrations would decrease 0.1 mg/L at depths greater than 100Stream water temperatures could permanently increase because groundwater recharge in the Simulated dissolved oxygen0.1°C at depths greater than dissolved oxygen of 25 and 50 meters, and would decrease 0.1 mg/L at depths greater than 100Operation: Same as South Alternative Same as South Alternative Mitigation: Same as South Alternative Same as Sou			Temporary but unavoidable immacts on water quality			Operation:	
peremian waterways (rana River and LaVerkin Creek).permanently increase because groundwaterOperation: Simulated Lake Powell water Simulated Lake Powell water temperature would decrease 0.1°C at depths greater than 25 meters. Simulated dissolved oxygen concentrations would decrease 0.1 m/L at depths greater than 100Operation: South Alternative Same as South Alternative Mitigation: Same as South Alternative same as South Alternative same as South Alternative decrease 0.1 m/L at depths greater than 100Operation: Same as South Alternative Same as South Alternative watering.Operation: George metropolitan area and Cedar Valley meta area and Cedar Valley meta area and Cedar Valley meta area and Cedar Valley meta area and Cedar Valley meta as South Alternative same as South Alternative metarsOperation: metars metarsDecrease 0.1 m/L at depths decrease 0.1 m/L at depths metersMonitoring: Same as South Alternative Same			(turbidity) may occur in			Stream water temperatures could	
Operation: Simulated Lake Powell water temperature would decrease temperature would decrease 			perennial waterways (Paria River and LaVerkin Creek).			permanently increase	
Concentration: Simulated Lake Powell water temperature would decrease 0.1°C at depths greater than 			Oneration:			because groundwater recharge in the St.	
temperature would decrease 0.1°C at depths greater than 25 meters. Simulated dissolved oxygen 			Simulated Lake Powell water	-		George metropolitan	
25 meters. Simulated dissolved oxygen concentrations would decrease 0.1 mg/L at depths of 25 and 50 meters, and would decrease 0.3 mg/L at depths greater than 100 meters.Mitigation: same as South Alternative Same as South Alternative Monitoring: Monitoring:Mitigation: watering.25 meters. Simulated dissolved oxygen concentrations would decrease 0.1 mg/L at depths meters.Mitigation: watering.messponse to restrictions on residential outdoor25 and 50 meters, and decrease 0.1 mg/L at depths greater than 100 meters.Mitigation: Nonitoring: Nonitigation None.Mitigation: Nonitigation None.25 and 50 meters, and decrease 0.3 mg/L at depths greater than 100 meters.Monitoring: Nonitigation None.Mitigation: Nonitigation None.25 and 50 meters, and would decrease 0.3 mg/L at depths greater than 100 meters.Monitoring: Nonitigation None.Mitigation: None.25 and 50 meters, and depths greater than 100 meters.Monitoring: None.Monitoring: None.Monitoring: None.26 mulative Impacts: would increase 0.1°C during would increase 0.1°C duringMonitoring: None.Monitoring: None.		Water	temperature would decrease 0.1°C at depths greater than	Operation: Same as South Alternative	Operation : Same as South Alternative	area and Cedar Valley would decline in	Operation : None expected
Is Monitoring: Monitoring: Mitigation: at Same as South Alternative Monitoring: Mitigation: and Cumulative Impacts: Same as South Alternative No mitigation and and None. Monitoring: Monitoring: ng Anternative No mitigation: None.		Quality	25 meters. Simulated	Mitioation.	Mitigation:	response to restrictions on residential outdoor	Mitioation:
Is Monitoring: atMonitoring: Monitoring:Mitigation: No mitigationatSame as South Alternative Same as South Alternative Same as South Alternative Same as South Alternative Same as South Alternative Monitoring:Mitigation: No mitigation Monitoring: None.andandNone.Monitoring: None.			concentrations would	Same as South Alternative	Same as South Alternative	watering.	No mitigation
Monitoring: atMonitoring: Monitoring:Mitigation: Mitigation:atSame as South AlternativeNo mitigationCumulative Impacts: amCumulative Impacts: None.No mitigationand andandNone.ngNone.None.			decrease 0.1 mg/L at depths			•	necessary
and Date as Douth Alternative Dath as Douth Alternative Dath as Douth Alternative cumulative Impacts: Cumulative Impacts: measures available. am Same as South Alternative Same as South Alternative and and None. ng None. None.			of 25 and 50 meters, and	Monitoring:	Monitoring:	Mitigation:	Monitoning.
Cumulative Impacts: Cumulative Impacts: am Same as South Alternative Monitoring: am None. None.			depths greater than 100		Dality as Duuli Alualian	measures available.	None.
am None.			meters.	Cumulative Impacts: Same as South Alternative	Cumulative Impacts: Same as South Alternative	Monitoring.	Cumulative Imnacts.
and ng			Simulated Glen Canyon Dam			None.	None.
			release temperature would decrease 0.1°C during the			Cumulativa Imnacts:	
			winter and spring months, and would increase 0.1°C during			None.	

		<u> </u>	Ta .3.1) Comparison of Potenti	Table D-2 (D.3.1) Comparison of Potential Impacts on Aquatic Ecosystems	stems	Page 2 of 6
			Alignment Alternatives		No Lake Powell Water	
Ecosystem	tem	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	Alternative	No Action Alternative
	the summe Simulated concentrati 0.11 mg/L conditions. concentrati less than 1 conditions.	the summer and fall months. Simulated dissolved oxygen concentrations would decrease 0.11 mg/L from baseline conditions. Simulated TDS concentrations would increase less than 1 mg/L from baseline conditions.				
D.3.1.1 Water Quality		Simulated TDS concentrations in Sand Hollow Reservoir would increase from 600 mg/L to 660 mg/L during initial LPP water deliveries; TDS concentration in Sand Hollow Reservoir would decrease to 576 mg/L as LPP inflows increase.				
	Simul LPP v meast Virgir qualit	Simulated return flows from LPP water would not measurably change modeled Virgin River flows or water quality from base conditions.				
	Mitig No m	Mitigation: No mitigation necessary.				
	Monit None.	Monitoring: None.				
	Cum No pa projec impac	Cumulative Impacts: No past, proposed or planned projects would have cumulative impacts on water quality.				

Alignment Alternatives
Existing Highway Alternative
Construction:
Same as South Alternative
•
Operation:
None expected.
Mitigation: Same as South Alternative
Monitoring:
Same as South Alternative
Cumulative Impacts: Same as South Alternative

	Page 4 of 6		No Action Alternative	Construction:	No features would be	consu uctea.														Operation : None expected.	1	Mitigation:	NO IIIIUZAUUII neressarv	TICCODAL y.	Monitoring:	None.		Cumulative Impacts: None	10110.
	stems	No Labo Domall Woton	no Lake Fowell water Alternative	Construction:	RO Treatment Facility		resources.	Operation:	Permanent, indirect imnacts could occur on	wetlands and riparian	areas adjacent to streams	In the St. George	metropolitan area and Cedar Valley from	reduced proundwater	recharge resulting from	restrictions on residential	outdoor watering.		Mitigation:	No mitigation available.	Monitoring.	None.	Cumpting Imports.	Cumulative Impacts: No past proposed or	planned projects would	have cumulative impacts	on wetland resources.		
Table D-2	al Impacts on Aquatic Ecosy		Southeast Corner Alternative	Construction:	Same as South Alternative															Operation: Same as South Alternative		Mitigation:	Sallie as South Alternative	Monitoring:	Same as South Alternative		Cumulative Impacts:	Same as South Alternative	
Ta	(D.3.1) Comparison of Potential Impacts on Aquatic Ecosystems	Alignment Alternatives	Existing Highway Alternative	Construction:	Same as South Alternative															Operation: Same as South Alternative		Mitigation:	Same as South Ancinante	Monitoring:	Same as South Alternative		Cumulative Impacts:	Same as South Alternative	
)		South Alternative	Construction:	Standard Operating	Flocedules (SUPS) to protect	wetland resources during construction would include	measures described in the	Wetlands and Riparian	recumcar report, unapter 5.	Temporary, indirect, but	unavoidable impacts on	wetland resources could	occur in the 0.1-acre wetland	in Gould Wash from	sedimentation and water	quality changes.	Oneration:	Oper autom.	None expected.	Mitigation:	Install silt fences/straw bales.	Monitoring.	None		Cumulative Impacts:	No past, proposed or planned	projects would have	wetland resources.
			Ecosystem													D.3.1.3	Wetland	Kesources											

		(D)	Table D-2 (D.3.1) Comparison of Potential Impacts on Aquatic Ecosystems	Table D-2 ntial Impacts on Aquatic Ecosy	stems	Page 5 of 6
1			Alignment Alternatives			
	Ecosystem	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	No Lake Fowell Water Alternative	No Action Alternative
L		Construction:	Construction:	Construction:	Construction:	Construction:
		Standard Operating Procedures	Same as South Alternative	Same as South Alternative	Construction of the RO	No features would be
		(SOPs) to protect threatened and			Treatment Facility	constructed.
		endangered aquatic species			would have no effects on	
		during construction would			threatened, endangered,	
		include measures described in			and candidate aquatic	
		une weuanus and Kupanan Technical Renort Chanter 5			species.	
					Operation:	
		Temporary but unavoidable			Listed aquatic species	
		impacts may occur on federally			and candidate species	
		listed fish species downstream			may be adversely	
		in the Paria River and LaVerkin			affected by reduced	
	D.3.1.4	Creek associated with pipeline			stream flows and	
L	Threatened &	crossings of these water bodies.			increased water	
	Endangered				temperatures in the	
	Aquatic	Operauon : None expected			Virgin Kiver resulting	
	Species	none capacitat.			IIIIII I cuuccu aroundwater recharge	
		Mitigation:	Operation:	Operation:	grunnwarch recharge.	Operation :
		Divert active stream flow	Same as South Alternative	Same as South Alternative	Mitigation:	None expected.
		through pipes during stream			No mitigation available.	
		crossing construction to protect	Mitigation:	Mitigation:		Mitigation:
		water quality.	Same as South Alternative	Same as South Alternative	Monitoring:	No mitigation
		Monitoring:	Manitaring.	Monitoring.	None.	necessary.
		Turbidity monitoring during	Same as South Alternative	Same as South Alternative	Cumulative Impacts:	Monitoring:
		construction.			No past, proposed or	None.
		Cumulativa Imnaate.	Cumulative Impacts:	Cumulative Impacts:	planned projects would	
		No past, proposed or planned	Same as South Alternative	Same as South Alternative	nave cumulative effects on aduatic TES.	Cumulative Impacts:
		projects would have cumulative effects on aquatic TFS			-	

	(D.3.1	Tal) Comparison of Potenti	Table D-2 (D.3.1) Comparison of Potential Impacts on Aquatic Ecosystems	systems	Page 6 of 6
	Alig	Alignment Alternatives		No Lolzo Borroll Woton	No. Action
Ecosystem	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	NO LARE FOWEIL WALET Alternative	Alternative
	Construction:	Construction:	Construction:	Construction:	Construction:
	Standard Operating Procedures (SOPs) to protect water quality	Same as South Alternative	Same as South Alternative	Construction of the R.O. Treatment Facility would not	No features would be constructed.
	during construction would include measures described in the Wetlands			affect the aquatic ecosystem.	
	and Riparian Technical Report, Chapter 5.				
	- - - -				
	I emporary but unavoidable impacts may occur to federal and state			Operation:	
	sensitive fish and other species in			Federal and state sensitive aduatic species may be	
	the Paria River and LaVerkin Creek			aquatic species inay up adverselv affected by	
	associated with pipeline crossings of these water hodies			reduced stream flows and	
D.3.1.5	titese water course.			increased water temperatures	
Sensitive	Operation:			in the Virgin River resulting	
Aquatic	None expected.	Operation:	:	from reduced groundwater	
Species		Same as South	Operation:	recharge.	
	Mitigation:	Alternative	Same as South		
	Divert active stream flow through		Alternative		Operation:
	pipes during stream crossing	Mittigation:		Mutugation:	None expected.
	construction to protect water quality.	Same as South	Mitigation:	No mitigation available.	
		Alternative	Same as South Alternative	Monitoring.	Muugauon: No mitigation
	Mulliutilig. Turkidity monitoring during	Monitoring.		None	necessary
	t an order of the construction.	Same as South	Monitoring:		. 6 1000 001
		Alternative	Same as South	Cumulative Impacts:	Monitoring:
	Cumulative Impacts:		Alternative	No past, proposed or planned	None.
	No past, proposed or planned	Cumulative Impacts:		projects would have	
	projects would have cumulative	Same as South	Cumulative Impacts:	cumulative effects on	Cumulative
	effects on sensitive aquatic species.	Alternative	Same as South Alternative	sensitive aquatic species.	Impacts: None

	(D.3.2) Practical	Table D-3 (D.3.2) Practicable Alternatives to Discharge of Dredged or Fill Material in Special Aquatic Sites	Table D-3 ge of Dredged or Fill Material in (Special Aquatic Sites	Page 1 of 1
		Alignment Alternatives			
Special Aquatic Site	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	No Lake Powell Water Alternative	No Action Alternative
D.3.2.1 Wetlands Wetlands D.3.2.2 Mudflats D.3.2.3 Vegetated Shallows D.3.2.4 Riffle and Pool Complexes	Construction: There are no practicable alternatives to the alternative as presented. All other practicable alternatives were considered in project development and eliminated because of impacts on wetlands or other aquatic ecosystems. No Impacts No Impacts No Impacts No Impacts Intere are no practicable alternatives to the alternative as presented. Tunneling was considered to avoid direct impacts on the Paria River and LaVerkin Creek; however, this was rejected because of high costs. In addition, tunneling at LaVerkin Creek would not be feasible because potential receiving pit locations are	Construction: There are no practicable alternatives to the alternative as presented. All other practicable alternatives were considered in project development and eliminated because of impacts on wetlands or other aquatic ecosystems. No Impacts on wetlands or other aquatic ecosystems. No Impacts on methants on the alternative alternatives to the alternative alternatives to the alternative as presented. Tunneling was considered to avoid direct impacts on the Paria River and LaVerkin Creek; however, this was rejected because of high costs. In addition, tunneling at LaVerkin Creek would not be feasible because potential receiving pit locations are	Construction: There are no practicable alternatives to the alternative as presented. All other practicable alternatives were considered in project development and eliminated because of impacts on wetlands or other aquatic ecosystems. No Impacts No Impacts Intereated to avoid direct impacts on the Paria River and LaVerkin Creek; however, this was rejected because of high costs. In addition, tunneling at LaVerkin Creek would not be feasible because potential receiving pit locations are	Construction: The RO Treatment Facility construction would not have any impacts on wetlands. No Impacts No Impacts No Impacts The RO Treatment Facility construction would not have any impacts on riffle and pool complexes.	No Impacts No Impacts No Impacts No Impacts
	occupied by adjacent residences.	occupied by adjacent residences.	occupied by adjacent residences.		

	(D.3.3) Practicable	Ta Alternatives That Would J	Table D-4 (D.3.3) Practicable Alternatives That Would Have Less Adverse Impact on Aquatic Ecosystems	Aquatic Ecosystems	Page 1 of 1
		Alignment Alternatives			
	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	NO LAKE FOWEIL WATET Alternative	No Action Alternative
	Construction : Estimated	Construction: Estimated	Construction: Estimated	Construction:	Construction:
	total costs = $\$1,163,500,000$	total costs =	total costs = $\$1,156,000,000$	Estimated total costs =	Estimated total costs =
		\$1,109,800,000		\$341,200,000 (direct:	80
	Estimated cost per acre foot = \$1,114*	Estimated cost per acre foot = \$1,114*	Estimated cost per acre foot = \$1,114*	RO Treatment/Brine Disposal)	
D.3.3.1	*Does not include power		*Does not include power	Estimated total costs =	
Conciderations	generation benefits and is	*Does not include power	generation benefits and is averaged over the veried 2020	\$1,951,880,000 (indirect: Residential	
CUIDING AUVID	averaged over the period 2020 through 2060; value is	averaged over the period	through 2060; value is an annualized cost	Xeriscaping)	
		is an annualized cost.		Estimated cost per acre foot = \$33,233*	
				*Capitalized cost.	
D.3.3.2 Existing Technology	Construction: Existing technologies for include large highway trucks and loaders. installation, and backfilling of pipelines ir compactors. Pipe would be assembled usi Cranes and large excavation equipment w would be repaved after backfilling using e areas would be revegetated using seed bro aspects of the project can be constructed u	Construction: Existing technologies for transporting fabricated pipe, fill, and materials include large highway trucks and loaders. Existing technologies for excavation, installation, and backfilling of pipelines include large excavators, dozers, haul trucks, and compactors. Pipe would be assembled using existing welding methods and equipment. Cranes and large excavation equipment would be used to place pipe. Disturbed roadways would be repaved after backfilling using existing paving equipment. Disturbed vegetated areas would be revegetated using sector and drills where appropriate. All aspects of the project can be constructed using existing technology.	Construction: Existing technologies for transporting fabricated pipe, fill, and materials include large highway trucks and loaders. Existing technologies for excavation, installation, and backfilling of pipelines include large excavators, dozers, haul trucks, and compactors. Pipe would be assembled using existing welding methods and equipment. Cranes and large excavation equipment would be used to place pipe. Disturbed roadways would be repaved after backfilling using existing paving equipment. Disturbed vegetated areas would be revegetated using seed broadcasters and drills where appropriate. All aspects of the project can be constructed using existing technology.	Construction: No direct construction. Individual property owners would convert residential landscapes to desert xeriscapes using existing technology.	Construction: No construction.
D.3.3.3 Logistics in Light of Overall Project Purposes	Can accomplish project purposes with reasonable logistical implementation.	Can accomplish project purposes with reasonable logistical implementation.	Can accomplish project purposes with reasonable logistical implementation.	Logistics of implementing this alternative would be complex and difficult to achieve because it requires actions on the part of each individual property owner.	Does not accomplish project objectives.

	(D.4) Alternative	Tab Evaluation for Violations C	Table D-5 (D.4) Alternative Evaluation for Violations Caused By Discharge of Dredged or Fill Material	ged or Fill Material	Page 1 of 1
	•	Alignment Alternatives		No Laba Damall Watan	
So	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	Alternative	No Action Alternative
Constructio No violation dredged or J construction States (see 6 Operation : No water qu	Construction: No violations of applicable state water q dredged or fill material would occur. Sta construction would prevent discharges o States (see Chapter 5 of the Wetland and Operation: No water quality violations are expected	Construction: No violations of applicable state water quality standards resulting from discharge of dredged or fill material would occur. Standard operating procedures to be used during construction would prevent discharges of these materials into waters of the United States (see Chapter 5 of the Wetland and Riparian Resources Technical Report). Operation: No water quality violations are expected.	esulting from discharge of procedures to be used during nto waters of the United ces Technical Report).	Construction: The RO Treatment Facility construction would not violate applicable water quality standards resulting from discharge of dredged or fill	Construction: No construction.
Cons Section Would No vo Comp Would	Construction: No violations of applicable to Section 307 of the Clean Wat would occur. Operation: No volatile organic compoun compounds, or pesticides list would be no discharge of nat	Construction: No violations of applicable toxic effluent standards or prohibitions as specified under Section 307 of the Clean Water Act resulting from discharge of dredged or fill material would occur. Operation: No volatile organic compounds, semi-volatile organic compounds, or pesticides listed under Section 307 CWA would be discharged. There would be no discharge of naturally-occurring metals listed in Section 307.	hibitions as specified under ge of dredged or fill material semi-volatile organic vould be discharged. There i in Section 307.	materia. Construction: The RO Treatment Facility construction would result in no violations of applicable toxic effluent standards.	Construction: No construction.
Cons The J listec of cr <i>Statu</i> Ope No in	Construction : The Preferred Alternative would not jeo listed as endangered under the ESA and of critical habitat as a result of discharge <i>Status Aquatic Resource Species and Hu</i> Operation : No impacts.	Construction : The Preferred Alternative would not jeopardize the continued existence of species listed as endangered under the ESA and would not result in destruction or modificat of critical habitat as a result of discharge of dredged or fill material (refer to <i>Special</i> <i>Status Aquatic Resource Species and Habitats Study Report</i>). Operation : No impacts.	pardize the continued existence of species would not result in destruction or modification e of dredged or fill material (refer to <i>Special</i> <i>ubitats Study Report</i>).	Construction: The RO Treatment Facility construction would not jeopardize the continued existence of listed species and would not result in habitat destruction from discharge of dredged or fill material.	Construction: No construction.

	(D.5) Potenti	Table D-6 (D.5) Potential Impacts on Physical and Chemical Components of the Aquatic Ecosystem	Table D-6 . Chemical Components of the A	quatic Ecosystem	
				•	Page 1 of 4
		Alignment Alternatives		No Loleo Boundi Moton	
	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	no Lake Fowell water Alternative	No Action Alternative
	Construction:	Construction:	Construction:	Construction:	Construction:
	A total of 0.01 acre of	A total of 0.01 acre of	Substrate impacts are the	The RO Treatment	There would be no
	wetland occurs within the	wetland occurs within the	same as under the South	Facility construction	construction and
	study area and could be	study area and would be	Alternative.	would not affect	substrates would not
	indirectly affected. A total of	indirectly affected. A total of		substrates.	be affected.
	48.08 acres of riparian	52.47 acres of riparian			
	vegetation was mapped	vegetation was mapped			
	within the study area and	within the study area and			
	would be directly and	would be directly and			
	indirectly affected. Standard	indirectly affected. Standard			
	operating procedures (SOPs,	operating procedures (SOPs,			
	see Chapter 5 in the Wetland	see Chapter 5 in the Wetland			
D 5 1	and Riparian Resources	and Riparian Resources			
L. J. I. Substrate	Technical Report) would be	Technical Report) would be			
Dubbuaic	implemented to protect	implemented to protect			
	existing substrates. No	existing substrates. No			
	excavated material would be	excavated material would be			
	discharged into any wetland.	discharged into any wetland.			
	All soil excavated from the	All soil excavated from the			
	pipeline trench would be	pipeline trench would be			
	placed on upland areas or	placed on upland areas or			
	stockpiled on existing	stockpiled on existing			
	roadbeds.	roadbeds.			
	Operation:	Operation:	Operation:	Operation:	Operation:
	No impacts.	No impacts.	No impacts.	No impacts.	No impacts.

Page 2 of 4		No Action Alternative	Construction: There would be no construction and no suspended particulates and turbidity impacts.	Operation: No impacts.
Table D-6 (D.5) Potential Impacts on Physical and Chemical Components of the Aquatic Ecosystem		No Lake Powell Water Alternative	Construction: The RO Treatment Facility construction would not result in suspended particulates and turbidity impacts.	Operation: No impacts.
		Southeast Corner Alternative	Construction: Suspended particulates and turbidity impacts would be the same as under the South Alternative.	Operation : No impacts.
	Alignment Alternatives	Existing Highway Alternative	Construction: Suspended particulates and turbidity impacts would be the same as under the South Alternative.	Operation : No impacts.
		South Alternative	Construction: All construction would occur in periods when water bodies are dry, with the exception of the Paria River and LaVerkin Creek. Standard operating procedures (SOPs, see Chapter 5 in the Wetland and Riparian Resources Technical Report) would be implemented to minimize suspended particulates and turbidity; however, some unavoidable impacts may occur in these water bodies. Turbidity would remain within the water quality	standards. Operation : No impacts.
			D.5.2 Suspended Particulates and Turbidity	

n Page 3 of 4		water No Action Alternative		The acility uld not ter ter There would be no uld water quality impacts. St. Valley n itotions utdoor tration:	
Aquatic Ecosysten	No Lelzo Donnoll	NO LAKE FOWEIL WALEF Alternative		Construction: The RO Treatment Facility construction would not result in any water quality impacts. Operation: Stream water temperatures could permanently increase because groundwater techarge in the St. George metropolitan area and Cedar Valley would decline in response to restrictions on residential outdoor watering.	
Table D-6 Chemical Components of the	Alignment Alternatives	Southeast Corner Alternative		Construction: Same as D.5.2. Operation : Same as described for the South Alternative.	
Table D-6 (D.5) Potential Impacts on Physical and Chemical Components of the Aquatic Ecosystem		Existing Highway Alternative		Construction: Same as D.5.2. Operation : South Alternative.	
(D.5) Potenti		South Alternative	Construction: Same as D.5.2.	Operation : Simulated Lake Powell water temperature would decrease 0.1°C at depths greater than 25 meters. Simulated dissolved oxygen concentrations would decrease 0.1 mg/L at depths of 25 and 50 meters, and would decrease 0.3 mg/L at depths greater than 100 meters. Simulated Glen Canyon Dam release temperature would decrease 0.1°C during the winter and spring months, and would increase 0.1°C during the summer and fall months. Simulated dissolved oxygen concentrations would decrease 0.11 mg/L from baseline conditions. Simulated TDS concentrations would increase less than 1 mg/L from baseline conditions.	Simulated TDS concentrations in Sand Hollow Reservoir would
				D.5.3 Water Quality	

Page 4 of 4		No Action Alternative		No impacts	No impacts
Table D-6 (D.5) Potential Impacts on Physical and Chemical Components of the Aquatic Ecosystem		No Lake Powell Water Alternative		No impacts	No impacts
		Southeast Corner Alternative		No impacts	No impacts
	Alignment Alternatives	Existing Highway Alternative		No impacts	No impacts
		South Alternative	increase from 600 mg/L to 660 mg/L during initial LPP water deliveries; TDS concentration in Sand Hollow Reservoir would decrease to 576 mg/L as LPP inflows increase. Simulated return flows from LPP water would not measurably change modeled Virgin River flows or water quality from base conditions.	No impacts	No impacts
		1	D.5.3 Water Quality	D.5.4 Current Patterns and Water Circulation	D.5.5 Normal Water Fluctuations

Page 1 of 2		No Action Alternative	See Table D-2, D.3.1.4	No impacts.
c Ecosystem		No Lake Powell Water Alternative	See Table D-2, D.3.1.4	Construction: No impacts on fish, benthic invertebrates and other organisms in the food web during RO Treatment Facility. Operation: Aquatic species in the food web may be adversely affected by reduced stream flows and increased water temperatures in the Virgin River resulting from reduced groundwater recharge related to restrictions on residential outdoor watering.
Table D-7 cal Characteristics of the Aquati		Southeast Corner Alternative	See Table D-2, D.3.1.4	Same as described for the South Alternative.
Table D-7 (D.6) Potential Impacts on Biological Characteristics of the Aquatic Ecosystem	Alignment Alternatives	Existing Highway Alternative	See Table D-2, D.3.1.4	Same as described for the South Alternative.
		South Alternative	See Table D-2, D.3.1.4	Construction: Temporary but unavoidable impacts on fish, benthic invertebrates and other organisms in the food web may occur in perennial waterways (e.g., Paria River and LaVerkin Creek) during short stream diversions. Operation: No impacts.
		<u> </u>	D.6.1 Threatened and Endangered Species	D.6.2 Fish, Crustaceans, Mollusks and Other Aquatic Organisms in the Food Web

	Page 2 of 2		No Action Alternative	No impacts.
ic Ecosystem	,	No Laka Bamall Wotan	Alternative	Avian, terrestrial invertebrate, and terrestrial mammalian species inhabiting riparian areas along the Virgin River, its St. George metropolitan area tributaries, and streams in Cedar Valley could be permanently affected by reduced groundwater recharge resulting in declines of riparian vegetation and aquatic resource habitat from lower flows and increased water temperatures. Additionally, other wildlife species inhabiting or using residential landscapes for food and cover would be adversely affected by converting residential landscapes to desert xeriscapes.
Table D-7 (D.6) Potential Impacts on Biological Characteristics of the Aquatic Ecosystem			Southeast Corner Alternative	Same as described for the South Alternative.
Ta otential Impacts on Biological	1	Alignment Alternatives	Existing Highway Alternative	Same as described for the South Alternative.
(D.6) P			South Alternative	Avian, terrestrial invertebrate, and terrestrial mammalian species inhabiting riparian areas along Paria River and LaVerkin Creek that would be temporarily impacted by pipeline construction could experience temporary disruption of the food web. These potential impacts would be minor and temporary.
				D.6.3 Other Wildlife

	Page 1 of 1		No Action Alternative	See Table D-2, D.3.1.3	No Impacts	No Impacts	Construction: No construction. Operation: No impacts.
		N s I show a show a show	NO LAKE FOWEII WAIEF Alternative	See Table D-2, D.3.1.3	No Impacts	No Impacts	Construction: The RO Treatment Facility construction would not affect riffle and pool complexes in the Virgin River. Operation: Restrictions on outdoor residential watering would reduce groundwater recharge and could reduce flows in the Virgin River and its tributaries in the St. George metropolitan area, resulting in changes to riffle and pool complexes.
Table D-8	Potential Impacts on Special Aquatic Sites		Southeast Corner Alternative	See Table D-2, D.3.1.3	No Impacts	No Impacts	Construction: Same as under the South Alternative. Operation : No impacts.
Ta	(D.7) Potential Impac	Alignment Alternatives	Existing Highway Alternative	See Table D-2, D.3.1.3	No Impacts	No Impacts	Construction: Same as under the South Alternative. Operation : No impacts.
			South Alternative	See Table D-2, D.3.1.3	No Impacts	No Impacts	Construction: Riffle and pool complexes present in the construction zone of Paria River and LaVerkin Creek would be temporarily impacted. Operation : No impacts.
				D.7.1 Wetlands	D.7.2 Mudflats	D.7.3 Vegetated Shallows	D.7.4 Briffle and Pool Complexes

	Page 1 of 1	Mc A attom	Alternative	No impacts.	No impacts.	le No impacts.	y No impacts.
	ics		NO LAKE FOWEII WAIEF Alternative	Restrictions on residential outdoor watering could reduce groundwater recharge, which could have adverse impacts on municipal and private wells in the St. George metropolitan area and Cedar Vallev.	Recreational fishing in some Virgin River tributary streams could be permanently impacted by reduced groundwater recharge resulting from restricting residential outdoor watering.	Water-related recreation in some Virgin River tributary streams could be permanently impacted by reduced groundwater recharge.	Aesthetics could be permanently impacted along streams.
Table D-9	tential Impacts on Human Use Characteristics		Southeast Corner Alternative	Same as described for the South Alternative.	Same as described for the South Alternative	Same as described for the South Alternative.	Same as described for the South Alternative.
T	(D.8) Potential Impacts o	Alignment Alternatives	Existing Highway Alternative	Same as described for the South Alternative.	Same as described for the South Alternative.	Same as described for the South Alternative.	Same as described for the South Alternative.
		Y	South Alternative	There would be no impacts on municipal or private water supplies in quantity or quality from discharge of dredged or fill material.	The Paria River at the pipeline crossing does not have suitable conditions for a recreational fishery. LaVerkin Creek at the pipeline could support a recreational fishery, which would be temporarily impacted during pipeline construction.	The Paria River and LaVerkin Creek at the pipeline crossings do not have suitable conditions for either consumptive or non- consumptive water-related recreation. Boating near the Lake Powell intake and Sand Hollow hydro station tailrace would be temporarily restricted during construction activities.	Temporary impacts on aesthetics during pipeline crossing construction.
				D.8.1 Municipal and Private Water Supplies	D.8.2 Recreational Fisheries	D.8.3 Water- Related Recreation	D.8.4 Aesthetics

		Tab (D.9.1) Description of	Table D-10 (D.9.1) Description of Dredged or Fill Materials		Dorro 1 of 3
		Alignment Alternatives			1 ago 1 01 7
	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	No Lake Powell Water Alternative	No Action Alternative
	An evaluation of potential contaminant sources in the projected pipeline crossing alignments indicates that no	Same as described for the South Alternative.	Same as described for the South Alternative.	RO Treatment Facility construction would not involve construction in waters of the U S or	No construction.
D.9.1.1 Gravel	contaminated soils would be anticipated during pipeline construction. All gravel used			with dredged or fill gravel materials.	
	for pipe bedding would be clean imported material free of biological, chemical or other pollutants.				
D.9.1.2 Sand	Sands excavated from existing wetland areas adjacent to highways have the potential to contain some pollutants from road runoff, which could include herbicides and volatile organic compounds (VOCs), although such contamination has not been documented. These materials when excavated for pipeline construction would not be discharged into the aquatic ecosystem.	Same as described for the South Alternative.	South Alternative.	RO Treatment Facility construction would not involve construction in waters of the U.S. or with dredged or fill sand materials.	No construction.

Page 2 of 2		ater No Action Alternative	lity No construction. In in or	lity No construction. I not on in or I.	lity No construction. I not in in	llity No construction. I not m in
		NO LAKE FOWEL WATER Alternative	RO Treatment Facility construction would not involve construction in waters of the U.S. or with dredged or fill naturally-occurring inert materials.	RO Treatment Facility construction would not involve construction in waters of the U.S. or with dredged or fill rock riprap materials.	RO Treatment Facility construction would not involve construction in waters of the U.S.	RO Treatment Facility construction would not involve construction in waters of the U.S.
Table D-10 (D.9.1) Description of Dredged or Fill Materials		Southeast Corner Alternative	Same as described for the South Alternative.	Same as described for the South Alternative.	Same as described for the South Alternative.	Same as described for the South Alternative.
Ta (D.9.1) Description o	Alignment Alternatives	Existing Highway Alternative	South Alternative.	Same as described for the South Alternative.	Same as described for the South Alternative.	Same as described for the South Alternative.
		South Alternative	Rock and soil excavated from pipeline alignments in and near existing wetlands and points of discharge that are adjacent to highways have the potential to contain some pollutants from road runoff, which could include herbicides and volatile organic compounds (VOCs), although such contamination has not been documented. These materials when excavated for pipeline stream crossing construction would not be discharged into the aquatic ecosystem.	Rock riprap may be used for stream bank protection at the pipeline crossings of streams.	All excavated earth used for pipeline crossing trench backfill would be pollution- free.	All concrete used for pipeline crossing construction would be pollutant-free.
			D.9.1.3 Other Naturally- Occurring Inert Materials	D.9.1.4 Rock Riprap	C.9.1.5 Excavated Earth Used for Trench Backfill	C.9.1.6 Concrete

Page 1 of 1		No Action Alternative	No Impacts	No Impacts	No Impacts	No Impacts	No Impacts	No Impacts
erials		No Lake Powell Water Alternative	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.
Table D-11 mination of Dredged or Fill Mat		Southeast Corner Alternative	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.
Table D-11 (D.9.2) Potential for Contamination of Dredged or Fill Materials	Alignment Alternatives	Existing Highway Alternative	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.
		South Alternative	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.	No potential for contamination, no impacts.
			D.9.2.1 Gravel	D.9.2.2 Sand	D.9.2.3 Other Naturally- Occurring Inert Materials	D.9.2.4 Rock Riprap	D.9.2.5 Excavated Earth Used for Trench Backfill	D.9.2.6 Concrete

Alignment Alternative Alignment Alternative No Lake Powell Water No Action Alternative No Action Alternative Denotes of the Parta River Exatta add Laverative Exatta add Laverative South Alternative No construction No Action Alternative D101 D101 Eventure South Alternative South Alternative No constructed Annego word be constructed Annego word to constructed Annego word to constructed Annego word to the purped ad asternative. No Action Alternative. D101 termpacts. South Alternative. South Alternative. No Action Alternative. D102 termpacts. South Alternative. South Alternative. No Action Annego Ann			Tabl (D.10) Actions to Mi	Table D-12 (D.10) Actions to Minimize Adverse Effects		Page 1 of 3
South AlternativeExisting HighwaySouthest CornerAlternativeAuternativeOpen cuts of the Paria RiverSame as described for theSame as described for theNo constructionand LaVerkin Creek atSouth AlternativeSouth AlternativeMaternativeOpen cuts of the Paria RiverSame as described for theNo constructioninversitueSouth AlternativeSouth AlternativeMaternativeof the constructor and lowConstructor and lowSouth AlternativeMaternativeinversitueSouth AlternativeSouth AlternativeNoinversitueSouth AlternativeSouth AlternativeMaternativeinversitueSouth AlternativeSouth AlternativeMaternativeintrovicity, siltation andsedimentation. SubsurfaceSouth AlternativeNovould be pumped and settledSouth AlternativeSouth AlternativeNobelove lind application.South AlternativeSouth AlternativeImpacts.belove lind application.South AlternativeSouth AlternativeImpacts.belove lind application.South AlternativeSouth AlternativeImpacts.belove lind application.South AlternativeSouth AlternativeImpacts.belove lind application.South Alternative.South Alternative.Impacts.belove lind application.South Alternative.South Alternative.Impacts.belove lind application.South Alternative.South Alternative.Impacts.belove lind application.South			Alignment Alternatives		No Lolro Douroll Woton	
Open cuts of the Paria River Same as described for the Same as described for the impacts. No construction pipeline cossings would be constructions. Any riversiterant low would be tremporally diverted around the constructed during low or not diversities and a sedimentation. Shouth Alternative. South Alternative. No constructed for the impacts. remporally diverted around the construction area to avoid the purped interaction area to avoid a sedimentation. Subsurface water in pipeline trenches water in pipeline trenches No construction area to avoid the provide the sum of the construction. South Alternative. No construction Pollution-free concrete would be purped and application. South Alternative. No construction No construction Pollution-free concrete would be purped and application. South Alternative. South Alternative. No construction Pollution-free concrete would be proved for the impacts. South Alternative. No construction Pollution-free concrete would be proved for the impacts. South Alternative. No construction Pollution-free concrete would be proved around the river or stream scourt dependent around the river or stream scourt and concres and materials to would be proved around to concrete-encased proprime at river. No construction Existing cooble and boulder Same as described for the impacts. South Alternative. No construction		South Alternative	Existing Highway Alternative	Southeast Corner Alternative	Alternative	No Action Alternative
and LaVerkin Creck at pard LaVerkin Creck at point and LaVerkin Creck at provint and a provint of flow conditions. Any river/stream flow would be river/stream flow would be the proper and your area to avoid the construction area to avoid the construction area to avoid the construction subsurface would be pumped and sattled before land application. South Alternative. impacts. Pollution-free construction before land application. South Alternative. South Alternative. impacts. Pollution-free construction before land application. South Alternative. South Alternative. No construction impacts. Pollution-free concrete would be used for pipeline encasements. Pipeline encasements would be below deptil potential. In the flow would be compacted around would be compacted around would be compacted inert and coarse and materials would be compacted inert and coarse and materials to organed statistic cobbie and boulder inversitement cossing alignments would be pipeline inversitement cossing alignments would be below would be south Alternative. South Alternative. No construction impacts.		Open cuts of the Paria River	Same as described for the	Same as described for the	No construction	No Impacts
pipeline crossings would be constructed during low or no flow conditions. Any river/stream flow would be temporarily diverted around the construction area to avoid the construction area to avoid the construction area to avoid the construction shows are a described for the before land application. Pollution-free concrete would be used for pipeline encasements would be below the river or stream scout depth potential encasements would be below the river or stream scout depth potential the river or stream scout depth potential material from the pipeline would be compacted around control scaling and coarse sing. Existing cobble and boulder inversitean crossing alignments would be used to riversite and materials to over the compacted inert straw bales would be used to riversite and coarse sing alignments would be used to straw bales would be used to s		and LaVerkin Creek at	South Alternative.	South Alternative.	impacts.	
constructed during low or no flow conditions. Any triverstream flow would be temporarily diverted around the construction area to avoid turbidity, siltation and sedimentation. Subsurface water in pipeline trenches would be pumped and settled before land application. Pollution-free concrete would be used for pipeline be used for pipeline triversteaments. Pipeline be used for pipeline be used for pipeline concrete same and be used for pipeline be used for pipeline the compactant of around be used for pipeline be used for pipeline the river of stream scourt depth potential. Inert gravel and coarse sand materials would be compacted around concrete-encased pipeline at river/stream crossings. Existing cobble and boulder inver/stream crossing alignments would be black digments would be black inver/stream crossing.		pipeline crossings would be				
flow conditions. Any riverstream flow would be temporarily stlation and sedimentation. Subsurface water in pipeline trenches would be pumped and settled before land application. No construction before land application. Same as described for the before land application. No construction before land application. Same as described for the before land application. Same as described for the before land application. No construction before land application. Same as described for the betore land application. Same as described for the betore land application. No construction before land application. South Alternative. South Alternative. No construction before land application. South Alternative. South Alternative. No construction before land application. South Alternative. South Alternative. No construction before land application. South Alternative. South Alternative. No construction and coarse sand materials would be compared around concrete-encesed pipeline at iter/sitem crossing. South Alternative. No construction and coarse sand materials would be used to compared around concrete-encesed pipeline at iter/sitem around be below South Alternative. No construction concrete-encesed pipeline at i		constructed during low or no				
temporarily diverted around termporarily diverted around the construction area to avoid turbidity, siltation and sedimentation. Subsurface water in pipeline trenches would be pumped and. Pollution-free concrete would before land application. Pollution-free concrete would betore land application. Pollution-free compacted for the encasements. Pipeline encasements would be below the river or stream scour depth potential. Inert gravel and coarse seand materials would be compacted around concrete-encased pipelines at river/stream crossing. alignments would be placed over the compacted inert gravel and sand materials to original grade. Silf fences and straw bales would be used to control sediment transport.		flow conditions. Any				
temporarily diverted around the construction area to avoid turbidity siltation and sedimentation. Subsurface water in pipeline trenches would be pumped and settled before land application.No construction impacts.Pollution-free concrete would below be used for pipeline encasements. Pipeline encasements. Pipeline encasements would be below the river or stream scour depth potential. Inert gravel and coarse stand materials would be compacted and accribed for the south Alternative.No constructionPollution-free below the river or stream scour depth potential. Inert gravel and coarse stand materials would be compacted around concrete-encased pipelines at river/stream crossing alignments would be placed over the compacted inert gravel and set to constructionNo constructionExisting coble and boulder river/stream crossing alignments would be used to river/stream crossing alignment scould be used to river/stream crossingSouth Alternative.Existing coble and boulder river/stream crossing alignments would be used to controle beard and accribed for the gravel and set to river/stream crossingNo constructionExisting coble and boulder river/stream crossing alignments would be used to control sediment transport.No construction	D.10.1	river/stream flow would be				
the construction area to avoid the construction area to avoid sedimentation.here construction and sedimentation.sedimentation. sedimentation.Suth Alternative.No constructionbefore land application.Same as described for the south Alternative.No constructionPollution-free concrete would be used for pieline encasements. Pipeline encasements would be belowSame as described for the south Alternative.No constructionPollution-free concrete would be used for pieline encasements. Pipeline encasements would be belowSouth Alternative.No constructionPollution-free concrete would be used to pieline encasements. Pipeline encasements would be belowSouth Alternative.No constructionPollution-free concrete would be compacted and coarse sand materials would be compacted inert and coarse sand materials would be compacted inert gravel and boulderSouth Alternative.No constructionExisting coble and boulder inposition a lignments would be placed original grade. Slit frems and straw bales would be used to original grade. Slit frems and straw bales would be used to control sediment transport.South Alternative.No construction	Location of	temporarily diverted around				
turbidity, siltation and sedimentation. Subsurface water in pipeline the proped and settled before land applicationNo constructionPollution-free concrete would before land applicationSouth Alternative.No constructionPollution-free concrete would be purped before land applicationSouth Alternative.No constructionPollution-free concrete would be below the river or stream scourt depth potential. Inert gravel and coarse sand materials would be compacted around concrete-encased pipelinesSouth Alternative.No constructionExisting coble and boulder inver/stream crossing over the compacted inert form the pipelineSouth Alternative.No constructionExisting coble and bulder original grade. Silt fences and straw bales would be used to original grade.South Alternative.No constructionExisting coble and bulder for the compacted inert for the sould be used to original grade.No construction	Discharge	the construction area to avoid				
sedimentation. Subsurface water in pipeline trenches would be purplead and settled before land application. Pollution-free concrete would be used for pipeline encasements. Pipeline encasements. Pipeline encasements would be below the river or stream scour depth potential. Inert gravel and coarse sand materials would be compacted around concrete-encased pipelines at river/stream crossings. Existing cobble and boulder inver/stream crossings. Existing cobble and boulder inver/stream storsing and materials to original grade. Silt fences and straw bales would be used to original grade. Silt fences and straw bales would be used to		turbidity, siltation and				
water in pipeline trenches would be pumped and settled before land application.Same as described for the Same as described for the South Alternative.No constructionPollution-free concrete would be used for pipeline encasements. Pipeline encasements would be below the river or stream scour depth potential. Inert gravel and constreaments would be below the river or stream scour depth potential. Inert gravel and conset sand materials would be compacted around constructe-encased pipelines at river/stream crossings.Same as described for the South Alternative.Same as described for the South Alternative.Existing cobble and boulder alignments would be placed oreflated and the compacted around content-encased pipeline alignments would be used to original grade. Silt fences and straw bales would be used to original grade. Silt fences and straw bales would be used to control sediment transport.No construction		sedimentation. Subsurface				
would be pumped and settledwould be pumped and settledbefore land application.Pollution-free concrete wouldSame as described for theNo constructionPollution-free concrete wouldSame as described for theNo constructionbefore pipelineSouth Alternative.South Alternative.No constructionencasements. PipelineSouth Alternative.South Alternative.No constructiondepth potential. Inert graveland coarse sand materialsSouth Alternative.No constructionand coarse sand materialswould be compacted aroundSouth Alternative.No constructioninver/stream crossings.Existing cobble and boulderSame as described for theNo constructioninver/stream crossingalignments would be placedSouth Alternative.No constructionalignments would be used toSouth Alternative.South Alternative.South Alternative.triver/stream crossingsalignments would be used toSouth Alternative.No constructionalignments would be used tocorrect-encased tistSouth Alternative.South Alternative.triver/stream crossings.Existing cobble and boulderSouth Alternative.No constructionalignments would be used toSouth Alternative.Impacts.alignment would be used toControl sediment transport.Existing cobble and boulderalignment transport.Existing cobble and be used toSouth Alternative.alignment transport.Existing cobble and be used toExisting cobble and be used toalignment transport. </td <td></td> <td>water in pipeline trenches</td> <td></td> <td></td> <td></td> <td></td>		water in pipeline trenches				
before land application.before land application.before land application.Pollution-free concrete would be used for pipeline encasements. Pipeline encasements would be below the river or trans would be below the river or and materials would be compacted around concrete-encased pipelines at river/stream crossings.South Alternative.No constructionExisting cobble and boulder or river/stream crossing a lignments would be used for the concrete-encased pipelines at river/stream crossing.South Alternative.No constructionExisting cobble and boulder or encasend and coarse sand materials to concrete-encased pipelinesSouth Alternative.No constructionExisting cobble and boulder or encasend straw bales would be used to or encased pipeline a figment transport.South Alternative.No constructionExisting cobble and boulder or encasend a net conserved or encase and materials to oor or encased pipeline a figment transport.South Alternative.No construction		would be pumped and settled				
Pollution-free concrete would be used for pipeline encasements. Pipeline encasements would be below the river or stream scour depth potential. Inert gravel and coarse sand materials would be compacted around construction and coarse sand materials would be compacted around constructer-encased pipeline swould be compacted around constream crossings.No construction impacts.Existing coble and boulder material from the pipeline and over the compacted inert gravel and sand materials to original grade. Silt fences and and be under transport.South Alternative.No construction impacts.Existing coble and boulder material from the pipeline straw bales would be used to or control sediment transport.South Alternative.No construction impacts.		before land application.				
be used for pipelineSouth Alternative.Impacts.encasements. Pipelineencasements would be belowthe river or stream scourimpacts.encasements would be belowthe river or stream scourencasements would be belowimpacts.depth potential. Inert graveladepth potential. Inert gravelimpacts.adepth potential. Inert gravelmaterialswould be compacted aroundwould be compacted aroundconcrete-encased pipelines atimpacts.encreterences of pipelinesSame as described for theNo constructionmaterial from the pipelineSouth Alternative.South Alternative.inver/stream crossingalignments would be placedSouth Alternative.over the compacted inertgravel and sand materials tooriginal grade. Silt fences andstraw bales would be used tooriginal grade. Silt fences andcontrol sediment transport.		Pollution-free concrete would	Same as described for the	Same as described for the	No construction	No Impacts
encasements. Pipeline encasements would be below the river or stream scour depth potential. Inert gravel and coarse sand materials would be compacted around concrete-encased pipelines at river/stream crossings. Existing cobble and boulder and coarse sand materials would be compacted around concrete-encased pipelines at river/stream crossings. Existing cobble and boulder material from the pipeline river/stream crossing alignments would be placed over the compacted inert gravel and sand materials to original grade. Silt fences and straw bales would be used to control sediment transport.		be used for pipeline	South Alternative.	South Alternative.	impacts.	
encasements would be below the river or stream scour depth potential. Inert gravel and coarse sand materials would be compacted around concrete-encased pipelines at river/stream crossings. Existing cobble and boulder river/stream crossings. Existing cobble and boulder river/stream crossing alignments would be placed over the compacted inert gravel and sand materials to original grade. Silt fences and straw bales would be used to		encasements. Pipeline				
the river or stream scour depth potential. Inert gravel and coarse sand materials would be compacted around concrete-encased pipelines at river/stream crossings.eExisting cobble and boulder material from the pipeline river/stream crossing alignments would be under river/stream crossing alignments would be used to over the compacted inert gravel and sand materials to original grade. Silt fences and straw bales would be used to control sediment transport.No construction south Alternative.	D.10.2	encasements would be below				
depth potential. Inert gravel and coarse sand materials would be compacted around concrete-encased pipelines at river/stream crossings.No constructionExisting cobble and boulder material from the pipeline river/stream crossing alignments would be placed over the compacted inert gravel and sand materials to original grade. Silt fences and straw bales would be used to control sediment transport.No construction	Material to	the river or stream scour				
and coarse sand materialsand coarse sand materialswould be compacted aroundconcrete-encased pipelines atriver/stream crossings.Existing coble and boulderExisting coble and boulderSame as described for thematerial from the pipelineSouth Alternative.inver/stream crossingSouth Alternative.<	be	depth potential. Inert gravel				
would be compacted around concrete-encased pipelines at river/stream crossings.No compacted for the Same as described for the South Alternative.No constructionExisting cobble and boulder material from the pipeline river/stream crossing alignments would be placed over the compacted inert gravel and sand materials to original grade. Silt fences and straw bales would be used to control sediment transport.No construction impacts.	Discharged	and coarse sand materials				
concrete-encased pipelines atconcrete-encased pipelines atFiver/stream crossings.Existing cobble and boulderSame as described for theExisting cobble and boulderSame as described for theNo constructioninver/stream crossingSouth Alternative.South Alternative.inver/stream crossingSouth Alternative.No constructionalignments would be placedSouth Alternative.Impacts.over the compacted inertSouth Alternative.Impacts.gravel and sand materials tooriginal grade. Silt fences andImpacts.original grade. Silt fences andcontrol sediment transport.Impacts.		would be compacted around				
river/stream crossings.river/stream crossings.Existing cobble and boulderSame as described for theNo constructionmaterial from the pipelineSouth Alternative.No constructionniver/stream crossingSouth Alternative.South Alternative.alignments would be placedSouth Alternative.Impacts.over the compacted inertgravel and sand materials tooriginal grade. Silt fences andstraw bales would be used tocontrol sediment transport.		concrete-encased pipelines at				
Existing cobble and boulderSame as described for the material from the pipelineSame as described for the South Alternative.No constructionmaterial from the pipelineSouth Alternative.South Alternative.No constructionriver/stream crossing alignments would be placed over the compacted inert gravel and sand materials to original grade. Silt fences and straw bales would be used to control sediment transport.Same as described for the South Alternative.No construction		river/stream crossings.				
material from the pipelineSouth Alternative.river/stream crossing alignments would be placed over the compacted inert gravel and sand materials to original grade. Silt fences and straw bales would be used to control sediment transport.South Alternative.		Existing cobble and boulder	Same as described for the	Same as described for the	No construction	No Impacts
		material from the pipeline	South Alternative.	South Alternative.	impacts.	
	D.10.3	river/stream crossing				
	Control of	alignments would be placed				
	Material	over the compacted inert				
	After	gravel and sand materials to				
straw bales would be used to control sediment transport.	Discharge	original grade. Silt fences and				
control sediment transport.		straw bales would be used to				
		control sediment transport.				

		Tah (D.10) Actions to M	Table D-12 10) Actions to Minimize Adverse Effects		Page 2 of 3
		Alignment Alternatives		No I also Boundil Water	
	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	NO LAKE FOWEIL WALET Alternative	No Action Alternative
D.10.4 Method of Dispersion	Culvert pipes would be used to temporarily divert river or stream flows around pipeline crossing sites. Culverts would be installed at existing stream grades to maintain appropriate flow velocities and capacities through the pipes. Water bladder dams would be installed upstream of pipeline crossing sites as coffer dams to collect the water for culvert pipe diversions	Same as described for the South Alternative.	Same as described for the South Alternative.	No construction impacts.	No Impacts
D.10.5 Applicable Discharge Technology	Pipeline trench excavation and installation equipment operating within the dewatered channels would be inspected and maintained to avoid, and monitored for, hydraulic fluid, fuel, oil and grease leaks. All equipment refueling would be performed outside of the dewatered channel and adjacent floodplain. Equipment operators would be trained in appropriate work methods within sensitive aquatic habitats. Excavated materials would be carefully placed in haul trucks to avoid spillage.	Same as described for the South Alternative.	Same as described for the South Alternative.	No construction impacts.	No Impacts

Page 3 of 3		No Action Alternative	No Impacts	1																	No Impacts											None.
		No Lake Fowell Water Alternative	No construction	impacts.		Operation: Increase	flows in Virgin River	and tributary streams	affected by reduced	groundwater recharge	trom converting	residential landscapes	to desert xeriscapes	through restrictions on	residential outdoor	watering.					No construction	impacts.		Operation: Increase	flows in Virgin River	and tributary streams	affected by reduced	groundwater recharge	from converting	residential landscapes	to desert xeriscapes.	None.
Table D-12 (D.10) Actions to Minimize Adverse Effects		Southeast Corner Alternative	Same as described for the	South Alternative.																	Same as described for the	South Alternative.										None.
Tal (D.10) Actions to M	Alignment Alternatives	Existing Highway Alternative	Same as described for the	South Alternative.																	Same as described for the	South Alternative.										None.
		South Alternative	Pipeline crossing site clearing	would include salvaging	riparian shrubs for replanting	in the same locations	following site restoration and	reclamation. Riparian	vegetation clearing of the	pipeline crossing would be	minimized. Stream and river	bank restoration plans would	be prepared and focus on	restoring riparian vegetation	and stream bed conditions to	the same as before the	construction. Riparian	revegetation would involve	reseeding and replanting to	restore endemic vegetation.	Water quality would	maintained by diverting river	and stream flows through	culvert pipes around the	pipeline crossings. Excavated	materials would be disposed	away from the stream	channels in approved disposal	sites. Construction would be	planned for low or no flow	and low human use periods.	None.
		<u> </u>			-				D 106	g			SU	_						-							Human Use					Other Actions

	(D.1	Table D-13 (D.11) Factual Determinations of Impacts (Short-Term and Long-Term)	Table D-13 of Impacts (Short-Term and Lor	ıg-Term)	Page 1 of 4
		Alignment Alternatives		notoW llomod orlo I oN	
	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	NO LAKE FOWER WALET Alternative	No Action Alternative
	Construction:	Construction:	Construction:		
	A total of 0.01 acre of	A total of 0.01 acre of	Substrate impacts would be		
	wetland occurs within the	wetland occurs within the	the same as described for the	Constantion	Construction:
	study area and cound be indirectly affected.	study area and would be indirectly affected.	Souul Alichiau ve.	There would be no	There would be no
	Mitigation measures such as	Mitigation measures such as		construction in	construction in
	silt fences and straw bales	silt fences and straw bales		streams and substrates	surcants and subsurates
	could effectively control	could effectively control		would not be affected.	WOULD THOU OF ALLOCION.
	sedimentation that may	sedimentation that may			
	affect wetland substrates. A	affect wetland substrates. A			
	total of 48.08 acres of	total of 52.47 acres of			
	riparian vegetation was	riparian vegetation was			
	mapped within the study	mapped within the study			
D111.1	area and would be directly	area and would be directly			
Physical	and indirectly affected.	and indirectly affected.		Operation:	
Substrate		Standard operating		Indirect impacts of	
Determina-		procedures (SOPs, see		restricting residential	
tions		Chapter 5 in the Wetland		outdoor watering	
STOT	and Riparian Resources	and Riparian Resources		would reduce	
	I echnical Report) would be	Technical Report) would be		groundwater recharge	
	implemented to protect	implemented to protect		and could result in decreased flows in the	
	excavated material would be	excavated material would be		Virgin River. St.	
	discharged into any wetland.	discharged into any wetland.		George area tributary	
	All soil excavated from the	All soil excavated from the		streams, and Cedar	
	pipeline trench would be	pipeline trench would be		Valley streams, which	
	placed on upland areas or	placed on upland areas or		could affect particle	
	stockpiled on existing	stockpiled on existing		transport and change	Oneration:
	roadbeds.	roadbeds.	Operation:	substrate composition.	No impacts
			No impacts.		TAU IIII Puco.
	Operation: No impacts.	Operation: No impacts.			
	7	-			

	(D. 1	Table D-13 (D.11) Factual Determinations of Impacts (Short-Term and Long-Term)	Table D-13 of Impacts (Short-Term and Lon	ıg-Term)	Page 2 of 4
		Alignment Alternatives		No.I. also Bernell Western	
	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	NO LAKE FOWEL WALET Alternative	No Action Alternative
D.11.2 Water Circulation, Fluctuation and Salinity Determina- tions	No changes would be made in water circulation or fluctuation in Lake Powell or Sand Hollow Reservoir. Sand Hollow TDS concentrations would initially increase because of increased salt load, then decrease below baseline conditions to 576 mg/L.	Same as described for the South Alternative.	Same as described for the South Alternative.	No impacts.	No impacts.
D.11.3 Suspended Particulate and Turbidity Determina- tions	Construction: All construction would occur during periods when water bodies are dry, with the exception of the Paria River and LaVerkin Creek, for which pipeline crossings would be constructed during low or no flow conditions. Standard operating procedures (SOPs, see Chapter 5 in the Wetland and Riparian Resources Technical Report) would be implemented to minimize	Construction: Suspended particulates and turbidity impacts would be the same as described for the South Alternative.	Construction: Suspended particulates and turbidity impacts would be the same as described for the South Alternative.	Construction: There would be no construction and no suspended particulates and turbidity impacts.	Construction: There would be no construction and no suspended particulates and turbidity impacts.
	suspended particulates and turbidity, including temporarily diverting flows through culvert pipes around the pipeline crossing sites. Operation : No impacts.	Operation : No impacts.	Operation : No impacts.	Operation: No impacts.	Operation: No impacts.

	(D.11) Fact	Table D-13 (D.11) Factual Determinations of Impacts (Short-Term and Long-Term))-13 acts (Short-Term and Lor	ıg-Term)	Page 3 of 4
	Aliş	Alignment Alternatives		No Lobo Douroll Wetor	
	South Alternative	Existing Highway Alternative	Southeast Corner Alternative	Alternative	No Action Alternative
D.11.4 Contaminant Determina-	The discharged fill material would have no contaminants. There would be no contaminant impacts.	The discharged fill material would have no contaminants. There	The discharged fill material would have no contaminants. There	No Impacts.	No Impacts.
tions		would be no contantinant impacts.	would be no contaminant impacts.		
D.11.5 Aquatic Ecosystem and Organism Determina- tions	The aquatic ecosystem and aquatic organisms in the Paria River and LaVerkin Creek at the pipeline crossings would be temporarily impacted by diverting flows through culvert pipes and by excavating the stream bed substrate to install the pipelines. Baseline water quality would be maintained in the diverted water. The diversion water velocity would be similar to baseline conditions because the diversion pipes would be installed at the same slope as the existing streams. The stream beds would be restored to the same condition and same material composition as before excavation, pipeline installation, concrete encasement, or fill and restoration of the stream beds. Benthic macroinvertebrates in the temporarily dewatered reaches of the Paria River and LaVerkin Creek would be subject to mortality.	Same as described for the South Alternative.	Same as described for the South Alternative.	No Impacts.	No Impacts.

Page 4 of 4		No Action Alternative	No Impacts.	No Impacts.	No Impacts.
Table D-13 (D.11) Factual Determinations of Impacts (Short-Term and Long-Term)		No Lake Fowell Water Alternative	No Impacts.	No Impacts.	RO Treatment Facility construction would not involve any discharge of dredge or fill materials, therefore, no secondary effects would occur on the aquatic ecosystem. Indirect effects could occur from operations under this alternative because of reduced groundwater recharge and related changes in local stream flow.
	Alignment Alternatives	Southeast Corner Alternative	Same as described for the South Alternative.	Same as described for the South Alternative.	Same as described for the South Alternative.
		Existing Highway Alternative	Same as described for the South Alternative.	Same as described for the South Alternative.	Same as described for the South Alternative.
	Ali	South Alternative	No materials excavated from the Paria River or LaVerkin Creek would be disposed in waters of the U.S. All excavated materials would be disposed in approved locations including rock quarries, gravel pits, and other upland sites.	No other known discharges of dredged or fill material are proposed or planned for the Paria River and LaVerkin Creek. There would be no cumulative effects on the aquatic ecosystem.	The proposed excavation for pipeline installation and fill in the Paria River and LaVerkin Creek would not result in any secondary effects on the aquatic ecosystem. All natural stream flows, substrates, water circulation, and other characteristics of free flowing streams would be restored following pipeline installation. Riparian vegetation would be restored on streambanks to control erosion and sedimentation. There would be no measurable secondary effects on the aquatic ecosystem.
			D.11.6 Proposed Disposal Site Determina- tions	D.11.7 Determina- tion of Cumulative Effects on the Aquatic Ecosystem	D.11.8 Determina- tion of Secondary Effects on the Aquatic Ecosystem